精英家教网 > 高中数学 > 题目详情
7.已知f(x)+2f($\frac{1}{x}$)=2x+1,求f(x).

分析 通过替换,推出方程,通过求解方程组,得到函数的解析式.

解答 解:f(x)+2f($\frac{1}{x}$)=2x+1,…①,$\frac{1}{x}$替换x,可得f($\frac{1}{x}$)+2f(x)=$\frac{2}{x}$+1,…②,
2×②-①,可得:3f(x)=$\frac{4}{x}-2x+1$,
可得f(x)=$\frac{4}{3x}-\frac{2x}{3}+\frac{1}{3}$.

点评 本题考查函数的解析式的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用正确的符号(∈,∉,=,?,?)填空:
(1)0∉N+
(2){0}?N;
(3)∅?{a};
(4)$\sqrt{3}$∈∁UQ(U=R);
(5)Z?{-1,0,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知定义在(-2,2)上的函数f(x)满足f(-x)=-f(x),且在定义域上单调递增,若f(2+a)+f(1-2a)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线的顶点坐标为(3,-2),且与x轴的两个交点的距离为4.
(1)求这个二次函数的解析式;
(2)写出抛物线的开口方向、对称轴、顶点坐标及最值;
(3)x为何值时,y随x的增大而减小?x为何值时,y随x的增大而增大?
(4)x为何值时,y>0?x为何值时,y=0?x为何值时,y<0?
(5)当2≤x≤6时,求函数的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.求值$\frac{2cos320°+sin100°(1+\sqrt{3}tan730°)}{\sqrt{1-sin260°}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.物体A运动到B的位移为△x,从A运动到C的位移为△x1,从C运动到B的位移为△x2.下列关系正确的是(  )
A.△x=△x1+△x2B.△x=△x1-△x2C.△x=|△x1|+|△x2|D.△x=|△x1|-|△x2|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{f({x}_{1})-f({x}_{2})}{{x}_{1}-{x}_{2}}$<0;
④$\frac{f({x}_{1})-1}{{x}_{1}}$<0(x1≠0);
⑤f(-x1)=$\frac{1}{f({x}_{1})}$.
当$f(x)={(\frac{1}{2})^x}$时,上述结论中正确的序号是①③④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a≥1,函数f(x)=4x+$\frac{9}{x+1}$+4(x∈[0,1]),g(x)=x3-3a2x-2a+16(x∈[0,1]).
(1)求f(x)和g(x)的值域;
(2)若?x1∈[0,1],?x2∈[0,1],使得g(x2)=f(x1)成立,试求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简($\sqrt{a-1}$)2+$\sqrt{(1-a)^{2}}$+$\root{7}{(a-1)^{7}}$.

查看答案和解析>>

同步练习册答案