精英家教网 > 高中数学 > 题目详情
7.集合M={x|mx2+x+2=0,x∈R}中至多只有一个元素,则实数m的取值范围是{m|m≥$\frac{1}{8}$,或m=0}.

分析 根据题意便知方程mx2+x+2=0至多只有一个解,显然需讨论m:m=0时,便可解出x=-2,符合方程有一个解;
而m≠0时,方程便为一元二次方程,从而判别式△≥0,这样解出m的范围,并合并m=0便可得出m的取值范围.

解答 解:①m=0时,x+2=0,x=-2,所以A中元素只有一个,满足条件;
②若m≠0,A中元素至多有一个;
∴一元二次方程mx2+x+2=0至多有一个解;
∴△=1-8m≤0;
∴m≥$\frac{1}{8}$;
∴综上得m的取值范围为:{m|m≥$\frac{1}{8}$,或m=0}.
故答案是:{m|m≥$\frac{1}{8}$,或m=0}.

点评 考查描述法表示集合,集合的元素的概念,以及一元二次方程至多一个解时判别式△的取值情况,不要漏了m=0的情况.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.不等式$\frac{(x-2)(x-3)}{{{x^2}+1}}<0$的解集是{x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=$\frac{2n}{n+1}$时,由n=k到n=k+1左边需要添加的项是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“x∈A或x∈B”是“x∈A∩B”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是一个定义在(0,+∞)上的函数,当x>1时,f(x)>0,且对于(0,+∞)上的任意两个实数a、b,有f(a)+f(b)=f(ab).
(1)求f(1)的值;
(2)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+4x,\;\;\;\;\;\;\;x≥0\\ 4x-{x^2},\;\;\;\;\;\;\;x<0\end{array}$,则不等式$f({\sqrt{x}})>f({2x})$的解集是{x|0<x<$\frac{1}{4}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)是奇函数,且满足f(1)=f(4)
(1)求实数a,b的值;
(2)试证明函数f(x)在区间(0,2]上单调递减;
(3)是否存在实数k同时满足以下两个条件:①不等式f(x)+$\frac{2k}{3}$>0对x∈(0,+∞)恒成立;②方程f(x)=k在x∈[-6,-1]上有解?若存在,试求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A=$\left\{{x|{lgx}≤0}\right\},B=\left\{{x|\frac{1}{2}≤x≤3}\right\}$,则A∩B=(  )
A.(0,3]B.(1,2]C.(1,3]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{3}}}{2},A、B$,分别是椭圆的左、右顶点,点P是椭圆上的一点,直线PA、PB的倾斜角分别为α、β满足tanα+tanβ=1,则直线PA的斜率为$\frac{{1±\sqrt{2}}}{2}$.

查看答案和解析>>

同步练习册答案