精英家教网 > 高中数学 > 题目详情
18.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=$\frac{2n}{n+1}$时,由n=k到n=k+1左边需要添加的项是$\frac{2}{(k+1)(k+2)}$.

分析 n=k时,左边最后一项为$\frac{2}{k(k+1)}$,n=k+1时,左边最后一项为$\frac{2}{(k+1)(k+2)}$,由此即可得到结论

解答 解:∵n=k时,左边最后一项为$\frac{2}{k(k+1)}$,n=k+1时,左边最后一项为$\frac{2}{(k+1)(k+2)}$,
∴从n=k到n=k+1,不等式左边需要添加的项为一项为$\frac{2}{(k+1)(k+2)}$,
故答案为:$\frac{2}{(k+1)(k+2)}$,

点评 本题考查数学归纳法的运用,考查学生分析解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数y=$\sqrt{{{log}_{0.2}}x}$的定义域为(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在椭圆4x2+y2=4上任取一点P,设P在x轴上的正投影为点D,当点P在椭圆上运动时,动点MM满足$\overrightarrow{PD}$=2$\overrightarrow{MD}$,则动点M的轨迹是(  )
A.焦点在x轴上的椭圆B.焦点在y轴上的椭圆
C.D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2{sin^2}(\frac{π}{4}+x)-\sqrt{3}cos2x$.
(1)求f(x)的最小正周期;
(2)求f(x)在$x∈[{\frac{π}{4},\frac{π}{2}}]$上的最大值和最小值;
(3)若不等式|f(x)-m|<2在$x∈[{\frac{π}{4},\frac{π}{2}}]$上恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点与F1、F2,若P为其上一点,则|PF1|=2|PF2|,则椭圆离心离的取值范围为[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若复数z=$\frac{a+i}{1-i}$(a∈R)是纯虚数,则实数a的值为(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期为π.
(1)求ω的值;  
(2)讨论f(x)在区间$[{0,\frac{5π}{6}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.集合M={x|mx2+x+2=0,x∈R}中至多只有一个元素,则实数m的取值范围是{m|m≥$\frac{1}{8}$,或m=0}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P(-2,2)且垂直于直线2x-y+1=0的直线方程为(  )
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

查看答案和解析>>

同步练习册答案