分析 (1)将函数进行化简,再利用周期公式求ω的值.
(2)当x在区间$[{0,\frac{5π}{6}}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,求单调性.
解答 解:函数$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$.
化简得Lf(x)=4cosωx($\frac{1}{2}$cosωx-$\frac{\sqrt{3}}{2}$sinωx)=2cos2ωx-$\sqrt{3}$sin2ωx=1+cos2ωx-$\sqrt{3}$sin2ωx=2cos(2ωx$+\frac{π}{3}$)+1.
(1)因为函数$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期为π,即T=$\frac{2π}{2ω}=π$,
解得:ω=1,
则:f(x)=2cos(2x$+\frac{π}{3}$)+1.
故得ω的值为1,
(2)由(1)可得f(x)=2cos(2x$+\frac{π}{3}$)+1.
当x在区间$[{0,\frac{5π}{6}}]$上时,故得:$\frac{π}{3}≤2x+\frac{π}{3}≤2π$,
当$\frac{π}{3}$$≤2x+\frac{π}{3}≤π$时,即$0≤x≤\frac{π}{3}$时,函数f(x)=2cos(2x$+\frac{π}{3}$)+1为减函数.
当π$≤2x+\frac{π}{3}≤2π$时,即$\frac{π}{3}≤x≤\frac{5π}{6}$时,函数f(x)=2cos(2x$+\frac{π}{3}$)+1为增函数.
所以,函数f(x)=2cos(2x$+\frac{π}{3}$)+1为减区间为$[0,\frac{π}{3}]$,增区间为$[\frac{π}{3},\frac{5π}{6}]$.
点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=5${\;}^{\frac{1}{2-x}}$ | B. | y=log2(3x+2) | C. | y=$\sqrt{1-{2}^{x}}$ | D. | y=($\frac{1}{3}$)1-x |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com