精英家教网 > 高中数学 > 题目详情
5.设集合M=(-∞,m],P={x|x≥-1,x∈R},若M∩P=∅,则实数m的取值范围是(-∞,-1).

分析 由已知利用交集性质直接求解.

解答 解:∵集合M=(-∞,m],P={x|x≥-1,x∈R},
M∩P=∅,
∴m<-1.
∴实数m的取值范围是(-∞,-1).
故答案为:(-∞,-1).

点评 本题考查实数m的取值范围的求法,是基础题,解题时要认真审题,注意交集性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知△ABC面积为3$\sqrt{3}$,A=$\frac{π}{3}$,AB=2,则BC=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足条件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-4≤0}\\{y≥m}\end{array}}\right.$,若目标函数z=2x+y的最大值与最小值的差为2,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点与F1、F2,若P为其上一点,则|PF1|=2|PF2|,则椭圆离心离的取值范围为[$\frac{1}{3}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=(x+1)•(x-1)在x=1处的导数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期为π.
(1)求ω的值;  
(2)讨论f(x)在区间$[{0,\frac{5π}{6}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二次函数y=f(x)满足f(2-x)=f(2+x),f(1)>f(0),若f(a)≥f(0),则实数a的取值范围是(  )
A.a≥0B.a≤0C.0≤a≤4D.a≤0或a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{a}-\frac{1}{x},x∈({0,+∞})$
(1)求证f(x)在(0,+∞)上递增
(2)若f(x)在[m,n]上的值域是[m,n],求实数a的取值范围
(3)当f(x)≤2x在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试预测加工10个零件需要多少小时?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-x{\overline{x}}^{2}}$;$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$;)

查看答案和解析>>

同步练习册答案