精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=$\frac{1}{a}-\frac{1}{x},x∈({0,+∞})$
(1)求证f(x)在(0,+∞)上递增
(2)若f(x)在[m,n]上的值域是[m,n],求实数a的取值范围
(3)当f(x)≤2x在(0,+∞)上恒成立,求实数a的取值范围.

分析 (1)利用f'(x)=$\frac{1}{{x}^{2}}$>0即可证明f(x)在(0,+∞)上递增;
(2)若f(x)在[m,n]上的值域是[m,n],则则$\left\{\begin{array}{l}{n≥m>0}\\{f(m)=m}\\{f(n)=n}\end{array}\right.$,构造函数y=$\frac{1}{a}$与y=x+$\frac{1}{x}$(x>0),利用两函数的图象有两个公共点,即求实数a的取值范围;
(3)当f(x)≤2x在(0,+∞)上恒成立⇒a≥$\frac{x}{{2x}^{2}+1}$=$\frac{1}{2x+\frac{1}{x}}$在(0,+∞)上恒成立,构造函数g(x)=$\frac{1}{2x+\frac{1}{x}}$,利用基本不等式可求得g(x)max,从而可求实数a的取值范围.

解答 (1)证明:∵f(x)=$\frac{1}{a}$-$\frac{1}{x}$,x∈(0,+∞),
∴f'(x)=$\frac{1}{{x}^{2}}$>0,
故函数f(x)在(0,+∞)上单调递增;
(2)∵f(x)在(0,+∞)上单调递增,
∴若f(x)在[m,n]上的值域是[m,n],
则$\left\{\begin{array}{l}{n≥m>0}\\{f(m)=m}\\{f(n)=n}\end{array}\right.$,即$\left\{\begin{array}{l}{\frac{1}{a}=m+\frac{1}{m}}\\{\frac{1}{a}=n+\frac{1}{n}}\\{n≥m>0}\end{array}\right.$,
故函数y=$\frac{1}{a}$与y=x+$\frac{1}{x}$(x>0)的图象有两个公共点,
∵当x>0时,y=x+$\frac{1}{x}$≥2(当且仅当x=$\frac{1}{x}$,即x=1时取“=”),
∴$\frac{1}{a}$≥2,解得0<a≤$\frac{1}{2}$.
(3)∵f(x)=$\frac{1}{a}$-$\frac{1}{x}$,f(x)≤2x在(0,+∞)上恒成立上,
∴a≥$\frac{x}{{2x}^{2}+1}$=$\frac{1}{2x+\frac{1}{x}}$在(0,+∞)上恒成立,
令g(x)=$\frac{1}{2x+\frac{1}{x}}$,
则g(x)≤$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$(当且仅当2x=$\frac{1}{x}$,即x=$\frac{\sqrt{2}}{2}$时取等号),
要使(0,+∞)上恒成立,
故a的取值范围是[$\frac{\sqrt{2}}{4}$,+∞).

点评 本题主要考查函数恒成立问题,突出考查函数的单调性、最值的应用,考查等价转化思想与函数方程思想,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=(a2-3a+3)•ax是指数函数,试确定函数y=loga(x+1)在区间(0,3)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合M=(-∞,m],P={x|x≥-1,x∈R},若M∩P=∅,则实数m的取值范围是(-∞,-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知f(x)是一个定义在(0,+∞)上的函数,当x>1时,f(x)>0,且对于(0,+∞)上的任意两个实数a、b,有f(a)+f(b)=f(ab).
(1)求f(1)的值;
(2)求证:f(x)在(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式$\frac{ax-6}{x-a}<0$的解集为M.
(1)当a=2时,求集合M;
(2)若2∈M且6∈M,求实数a的取值范围.
(3)不等式|x-8|≥2的解集为S,若M∪S=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)是奇函数,且满足f(1)=f(4)
(1)求实数a,b的值;
(2)试证明函数f(x)在区间(0,2]上单调递减;
(3)是否存在实数k同时满足以下两个条件:①不等式f(x)+$\frac{2k}{3}$>0对x∈(0,+∞)恒成立;②方程f(x)=k在x∈[-6,-1]上有解?若存在,试求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系p=$\left\{\begin{array}{l}{t+20,0<t<25,t∈{N}^{*}}\\{-t+70,25≤t≤30,t∈{N}^{*}}\end{array}\right.$
该商品的日销售量Q(件)时间t(天)的函数关系Q=-t+40(0<t≤30,t∈N*
求该商品的日销售额的最大值,并指出日销售额最大一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+{y^2}$=1(常数a>1),过点A(-a,0)且以t为斜率的直线与椭圆E交于点B,直线BO交椭圆E于点C(O坐标原点).
(1)求以t为自变量,△ABC的面积S(t)的函数解析式;
(2)若$a=2,t∈[{\frac{1}{2},1}]$,求S(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若实数a,b分别是方程x+lgx=6,x+10x=6的解,函数f(x)=$\left\{\begin{array}{l}{x^2}+(a+b)x+2,x≤0\\ 2,x>0\end{array}$,则关于x的方程f(x)=x的解的个数是(  )
A.3B.2C.1D.4

查看答案和解析>>

同步练习册答案