精英家教网 > 高中数学 > 题目详情
9.已知关于x的不等式$\frac{ax-6}{x-a}<0$的解集为M.
(1)当a=2时,求集合M;
(2)若2∈M且6∈M,求实数a的取值范围.
(3)不等式|x-8|≥2的解集为S,若M∪S=R,求实数a的取值范围.

分析 (1)当a=2时,不等式化为$\frac{2x-6}{x-2}$<0,推出同解不等式,利用解不等式求得集合M;
(2)由2∈M且6∈M,推出不等式组,然后解分式不等式组,求实数a的取值范围;
(3)不等式|x-8|≥2的解集为S={x|x≤6或x≥10},由M∪S=R,得$\left\{\begin{array}{l}{a>0}\\{(6a-6)(6-a)≤0}\\{(10a-6)(10-a)≤0}\end{array}\right.$,即可求实数a的取值范围.

解答 解:(1)当a=2时,不等式$\frac{ax-6}{x-a}<0$即$\frac{2x-6}{x-2}$<0,其解集M=(2,3).
(2)依题意可得$\left\{\begin{array}{l}{\frac{2a-6}{2-a}<0}\\{\frac{6a-6}{6-a}<0}\end{array}\right.$,解得a<1或a>6;
(3)不等式|x-8|≥2的解集为S={x|x≤6或x≥10},
∵M∪S=R,
∴$\left\{\begin{array}{l}{a>0}\\{(6a-6)(6-a)≤0}\\{(10a-6)(10-a)≤0}\end{array}\right.$,∴a≥10.

点评 本题考查其他不等式的解法,元素与集合关系的判断,考查分式不等式的解法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.计算:${({-27})^{\frac{2}{3}}}×{9^{-\frac{3}{2}}}$=(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.函数y=(x+1)•(x-1)在x=1处的导数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二次函数y=f(x)满足f(2-x)=f(2+x),f(1)>f(0),若f(a)≥f(0),则实数a的取值范围是(  )
A.a≥0B.a≤0C.0≤a≤4D.a≤0或a≥4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定义域是{x|x<2且x≠1}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\frac{1}{a}-\frac{1}{x},x∈({0,+∞})$
(1)求证f(x)在(0,+∞)上递增
(2)若f(x)在[m,n]上的值域是[m,n],求实数a的取值范围
(3)当f(x)≤2x在(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2A时,恒有F(x1)+f(x2)=2b,则称(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(-2016)+f(-2015)+f(-2015)+f(-2014)+…+f(2014)+f(2015)+f(2016)=(  )
A.0B.2016C.4032D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则$\frac{S_7}{a_1}$=(  )
A.-7B.14C.7D.-14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z1,z2在复平面内对应的点关于直线y=x对称,且z1=3+2i,则$\frac{z_1}{z_2}$=(  )
A.$\frac{12}{13}+\frac{5}{13}i$B.$-\frac{12}{13}+\frac{5}{13}i$C.$-\frac{12}{13}-\frac{5}{13}i$D.$\frac{12}{13}-\frac{5}{13}i$

查看答案和解析>>

同步练习册答案