精英家教网 > 高中数学 > 题目详情
4.函数y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定义域是{x|x<2且x≠1}.

分析 由分母中根式内部的代数式大于0,0指数幂的底数不为0联立不等式组求解.

解答 解:由$\left\{\begin{array}{l}{x-1≠0}\\{2-x>0}\end{array}\right.$,解得x<2且x≠1.
∴函数y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定义域是{x|x<2且x≠1}.
故答案为:{x|}x<2且x≠1}.

点评 本题考查函数的定义域及其求法,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知关于x的二次方程ax2-2(a+1)x+a-1=0有两根,且一根大于2,另一根小于2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程为(  )
A.2x+y-3=0B.x+y-1=0C.x-y-3=0D.2x-y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a>1,则$a+\frac{2}{a-1}$的最小值是2$\sqrt{2}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知集合A={x||2x-3|≤7},B{x|m+1≤x≤2m-1}.
(1)若B⊆A,求实数m的取值范围;
(2)当C=A∩Z时,求集合C的真子集的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式$\frac{ax-6}{x-a}<0$的解集为M.
(1)当a=2时,求集合M;
(2)若2∈M且6∈M,求实数a的取值范围.
(3)不等式|x-8|≥2的解集为S,若M∪S=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.圆x2+y2=5与圆(x-1)2+(y-1)2=3的公共弦的弦长等于(  )
A.2$\sqrt{2}$B.2$\sqrt{5}$C.$\frac{3\sqrt{7}}{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然对数的底数.
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求实数a的取值范围.(参考公式:(ax)′=axlna)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆曲线方程为${x^2}+\frac{y^2}{n}=1(n∈R)$,两焦点分别为F1,F2
(1)若n=-1,过左焦点为F1且斜率为$\sqrt{3}$的直线交圆锥曲线于点A,B,求△ABF2的周长.
(2)若n=4,P圆锥曲线上一点,求PF1•PF2的最大值和最小值.

查看答案和解析>>

同步练习册答案