精英家教网 > 高中数学 > 题目详情
14.已知关于x的二次方程ax2-2(a+1)x+a-1=0有两根,且一根大于2,另一根小于2,试求实数a的取值范围.

分析 由题意:令f(x)=ax2-2(a+1)x+a-1,函f(x)有两个零点且一零点大于2,一零点小于2,根据根的分布可求解.

解答 解:由题意:令f(x)=ax2-2(a+1)x+a-1,函f(x)有两个零点且一零点大于2,一零点小于2,
根据一元二次方程根的分布:
则a应满足$\left\{\begin{array}{l}{a>0}\\{f(2)<0}\end{array}\right.$或$\left\{\begin{array}{l}{a<0}\\{f(2)>0}\end{array}\right.$,即a•f(2)<0,
可得:a(4a-4a-4+a-1)<0
解得:0<a<5.
∴当0<a<5时,方程的根一个大于2,一个小于2.

点评 本题考查了一元二次方程根的分布的性质.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合A={x|x2-3x≥0},B={x|x<1},则A∩B=(  )
A.(-∞,0]∪[3,+∞)B.(-∞,1)∪[3,+∞)C.(-∞,1)D.(-∞,0]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥S-ABCD中,底面ABCD是边长为3$\sqrt{2}$的正方形,且各侧棱长均为2$\sqrt{3}$,求该四棱锥外接球的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数y=$\sqrt{4-{2^x}}$的定义域为A,函数y=lg(x-1)(x∈[2,11])的值域为B.
(1)求A和B    (2)求(CRA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在R上单调递增的是(  )
A.y=|x|B.y=log2xC.y=x3D.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.计算:${({-27})^{\frac{2}{3}}}×{9^{-\frac{3}{2}}}$=(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=k-$\frac{1}{x}$(其中k为常数);
(1)求:函数的定义域;
(2)证明:函数在区间(0,+∞)上为增函数;
(3)若函数为奇函数,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知点A(0,-2),椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{3}}}{2}$,F是椭圆的右焦点,直线AF的斜率为$\frac{{2\sqrt{3}}}{3}$,O为坐标原点.
( I)求椭圆C的方程;
( II)设过点A的动直线l与C交于P、Q两点,当$|{PQ}|=\frac{{4\sqrt{2}}}{5}$时,求l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{{{{(x-1)}^0}}}{{\sqrt{2-x}}}$的定义域是{x|x<2且x≠1}.

查看答案和解析>>

同步练习册答案