精英家教网 > 高中数学 > 题目详情
19.计算:${({-27})^{\frac{2}{3}}}×{9^{-\frac{3}{2}}}$=(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

分析 利用有理数指数幂的性质、运算法则直接求解.

解答 解:${({-27})^{\frac{2}{3}}}×{9^{-\frac{3}{2}}}$
=[(-3)3]${\;}^{\frac{2}{3}}$×$({3}^{2})^{-\frac{3}{2}}$
=(-3)2×3-3
=9×$\frac{1}{27}$
=$\frac{1}{3}$.
故选:D.

点评 本题考查有理数指数幂化简求值,是基础题,解题时要认真审题,注意有理数指数幂的性质、运算法则的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-8x+7<0},B={x|x2-2x-a2-2a<0}
(1)当a=4时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知三点P($\frac{5}{2}$,-$\frac{3}{2}$)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知关于x的二次方程ax2-2(a+1)x+a-1=0有两根,且一根大于2,另一根小于2,试求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.若函数f(x)=(a2-3a+3)•ax是指数函数,试确定函数y=loga(x+1)在区间(0,3)上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图1:已知正方形ABCD的边长是2,有一动点M从点B出发沿正方形的边运动,路线是B→C→D→A.设点M经过的路程为x,△ABM的面积为S.

(1)求函数S=f(x)的解析式及其定义域;
(2)在图2中画出函数S=f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x+lnx-2的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式$\frac{ax-6}{x-a}<0$的解集为M.
(1)当a=2时,求集合M;
(2)若2∈M且6∈M,求实数a的取值范围.
(3)不等式|x-8|≥2的解集为S,若M∪S=R,求实数a的取值范围.

查看答案和解析>>

同步练习册答案