精英家教网 > 高中数学 > 题目详情
7.已知三点P($\frac{5}{2}$,-$\frac{3}{2}$)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.

分析 利用椭圆定义,求出2a,得出a,可求得椭圆的标准方程.

解答 解:(1)2a=PA+PB=2$\sqrt{10}$,
所以a=$\sqrt{10}$,又c=2,所以b2=a2-c2=6
则以A、B为焦点且过点P的椭圆的标准方程为:$\frac{{x}^{2}}{10}$+$\frac{{y}^{2}}{6}$=1.

点评 本题考查了椭圆方程的求法,是基础题,解题时要注意椭圆的简单性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)的焦点F和椭圆E:$\frac{x^2}{8}$+$\frac{y^2}{4}$=1的右焦点重合,
直线l过点F交抛物线于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的长;
(2)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,试求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α的终边经过点P(a,2a)(a<0),则cosα=$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC面积为3$\sqrt{3}$,A=$\frac{π}{3}$,AB=2,则BC=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数y=$\sqrt{4-{2^x}}$的定义域为A,函数y=lg(x-1)(x∈[2,11])的值域为B.
(1)求A和B    (2)求(CRA)∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下列各组函数中,表示同一个函数的是(  )
A.f(x)=2x+1与g(x)=$\frac{2{x}^{2}+x}{x}$B.y=x-1与y=$\frac{{x}^{2}-1}{x+1}$
C.y=$\frac{{x}^{2}-9}{x-3}$与y=x+3D.f(x)=1与g(x)=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.计算:${({-27})^{\frac{2}{3}}}×{9^{-\frac{3}{2}}}$=(  )
A.-3B.$-\frac{1}{3}$C.3D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足条件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-4≤0}\\{y≥m}\end{array}}\right.$,若目标函数z=2x+y的最大值与最小值的差为2,则m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.二次函数y=f(x)满足f(2-x)=f(2+x),f(1)>f(0),若f(a)≥f(0),则实数a的取值范围是(  )
A.a≥0B.a≤0C.0≤a≤4D.a≤0或a≥4

查看答案和解析>>

同步练习册答案