精英家教网 > 高中数学 > 题目详情
18.若角α的终边经过点P(a,2a)(a<0),则cosα=$-\frac{{\sqrt{5}}}{5}$.

分析 由条件利用任意角的三角函数的定义,求得cosα的值,

解答 解:由于a<0,角α的终边经过点P(a,2a),则x=a,y=2a,r=|OP|=-$\sqrt{5}$a,
∴cosα=$\frac{x}{r}$=$-\frac{{\sqrt{5}}}{5}$.
故答案为:$-\frac{{\sqrt{5}}}{5}$.

点评 本题主要考查任意角的三角函数的定义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=\sqrt{3+ax}$在区间(-2,4)内单调递减,则实数a的取值范围是(  )
A.a<0B.$-\frac{3}{4}<a<0$C.$-\frac{3}{2}≤a<0$D.$-\frac{3}{4}≤a<0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$\overrightarrow{a}$•($\overrightarrow{a}$+$\overrightarrow{b}$)=5,且|$\overrightarrow{a}$|=2|$\overrightarrow{b}$|=2,则向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在如图所示的方格纸中,用直尺和圆规画出下列向量:
(1)|$\overrightarrow{OA}$|=3,点A在点O正西方向;
(2)|$\overrightarrow{OB}$|=3$\sqrt{2}$,点B在点O北偏西45°方向;
(3)|$\overrightarrow{OC}$|=2,点C在点O南偏东60°方向.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.函数f(x)=$\sqrt{x+1}$+$\frac{{{{(1-x)}^0}}}{2-x}$的定义域为[-1,1)∪(1,2)∪(2,+∞)(用集合或区间表示).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知Sn为数列{an}的前n项和,a1=1,2Sn=(n+1)an,若关于正整数n的不等式an2-tan≤2t2的解集中的整数解有两个,则正实数T的取值范围为[1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-8x+7<0},B={x|x2-2x-a2-2a<0}
(1)当a=4时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知三点P($\frac{5}{2}$,-$\frac{3}{2}$)、A(-2,0)、B(2,0).求以A、B为焦点且过点P的椭圆的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x+lnx-2的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案