精英家教网 > 高中数学 > 题目详情
6.在如图所示的方格纸中,用直尺和圆规画出下列向量:
(1)|$\overrightarrow{OA}$|=3,点A在点O正西方向;
(2)|$\overrightarrow{OB}$|=3$\sqrt{2}$,点B在点O北偏西45°方向;
(3)|$\overrightarrow{OC}$|=2,点C在点O南偏东60°方向.

分析 用方向坐标与有向线段表示平面向量即可.

解答 解:(1)画出|$\overrightarrow{OA}$|=3,点A在点O正西方向,如图所示;
(2)画出|$\overrightarrow{OB}$|=3$\sqrt{2}$,点B在点O北偏西45°方向,如图所示;
(3)画出|$\overrightarrow{OC}$|=2,点C在点O南偏东60°方向,如图所示;

点评 本题考查了用有向线段表示平面向量的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.河大校办工厂生产的产品A的直径均位于区间[110,118]内(单位:mm).若生产一件产品A的直径位于区间[110,112),[112,114),[114,116),[116,118]内该厂可获利分别为10,20,30,10(单位:元),现从该厂生产的产品A中随机抽取100件测量它们的直径,得到如图所示的频率分布直方图.
(1)求a的值,并估计该厂生产一件A产品的平均利润;
(2)现用分层抽样法从直径位于区间[112,116)内的产品中随机抽取一个容量为5的样本,再从样本中随机抽取两件产品进行检测,求两件产品中至少有一件产品的直径位于区间[112,114)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知抛物线C:y2=2px(p>0)的焦点F和椭圆E:$\frac{x^2}{8}$+$\frac{y^2}{4}$=1的右焦点重合,
直线l过点F交抛物线于A,B两点.
(1)若直线l的倾斜角为60°,求|AB|的长;
(2)若直线l交y轴于点M,且$\overrightarrow{MA}$=m$\overrightarrow{AF}$,$\overrightarrow{MB}$=n$\overrightarrow{BF}$,试求m+n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设全集U=R,A={x∈R|a≤x≤2},B={x∈R|2x+1≤x+3,且3x≥2}.
(1)若a=1,求A∪B,(∁UA)∩B;
(2)若a=-5,C={x∈Z|x2+2x-3<0},求A∩C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列给出的赋值语句中正确的是(  )
A.3=BB.A=B=2C.M=4D.x2+y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知U=R,集合A={x|x>1},集合B={x|-1<x<2},则图中阴影部分表示的集合为(  )
A.{x|x>1}B.{x|x>-1}C.{x|-1<x<1}D.{x|-1<x≤1,或x≥2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若角α的终边经过点P(a,2a)(a<0),则cosα=$-\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知△ABC面积为3$\sqrt{3}$,A=$\frac{π}{3}$,AB=2,则BC=(  )
A.$\sqrt{3}$B.2C.2$\sqrt{7}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.实数x,y满足条件$\left\{{\begin{array}{l}{x-y+1≥0}\\{x+y-4≤0}\\{y≥m}\end{array}}\right.$,若目标函数z=2x+y的最大值与最小值的差为2,则m的值为2.

查看答案和解析>>

同步练习册答案