分析 (1)求导数f′(x),通过讨论0<a<1,a>1以及x>0可判断导数符号,从而得到函数的单调性;
(2)存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,等价于当x∈[-1,1]时,|f(x)max-f(x)min|=f(x)max-f(x)min≥e-1,利用导数易求函数f(x)在[-1,1]上的最小值f(0),而f(x)max=max{f(-1),f(1)},作差后构造函数可得f(x)max=f(1),从而有f(1)-f(0)≥e-1,再构造函数利用单调性可求得a的范围;
解答 解:(1)f'(x)=axlna+2x-lna=2x+(ax-1)lna…(1分)
当a>1时,lna>0,当x∈(0,+∞)时,2x>0,ax>1,∴ax-1>0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增;
当0<a<1时,lna<0,当x∈(0,+∞)时,2x>0,ax<1,∴ax-1<0,
所以f'(x)>0,故函数f(x)在(0,+∞)上单调递增,
综上,f(x)在(0,+∞)上单调递增,…(4分)
(2)f(x)=ax+x2-xlna-b,因为存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,
所以当x∈[-1,1]时,|f(x)max-f(x)min|=f(x)max-f(x)min≥e-1…(5分)
f'(x)=axlna+2x-lna=2x+(ax-1)lna,
①当x>0时,由a>1,可知ax-1>0,lna>0,∴f'(x)>0;
②当x<0时,由a>1,可知ax-1<0,lna>0,∴f'(x)<0;
③当x=0时,f'(x)=0,∴f(x)在[-1,0]上递减,在[0,1]上递增,
∴当x∈[-1,1]时,f(x)min=f(0)=1-b,f(x)max=max{f(-1),f(1)},…(7分)
而$f(1)-f({-1})=({a+1-lna-b})-({\frac{1}{a}+1+lna-b})=a-\frac{1}{a}-2lna$,
设$g(t)=t-\frac{1}{t}-2lnt({t>0})$,因为$g'(t)=1+\frac{1}{t^2}-\frac{2}{t}={({\frac{1}{t}-1})^2}≥0$(当t=1时取等号),
∴$g(t)=t-\frac{1}{t}-2lnt$在t∈(0,+∞)上单调递增,而g(1)=0,
∴当t>1时,g(t)>0,∴当a>1时,$a-\frac{1}{a}-2lna>0$,
∴f(1)>f(-1),…(9分)
∴f(1)-f(0)≥e-1,∴a-lna≥e-1,即a-lna≥e-lne,…(10分)
设h(a)=a-lna(a>1),则$h'(a)=1-\frac{1}{a}=\frac{a-1}{a}>0$,
∴函数h(a)=a-lna(a>1)在(1,+∞)上为增函数,∴a≥e,
既a的取值范围是[e,+∞)…(12分)
点评 本小题主要考查函数、导数、不等式证明等知识,通过运用导数知识解决函数、不等式问题,考查考生综合运用数学知识解决问题的能力,同时也考查函数与方程思想、化归与转化思想.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 2016 | C. | 4032 | D. | 4033 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -7 | B. | 14 | C. | 7 | D. | -14 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2m+3 | B. | 2m+6 | C. | 6 | D. | 6-2m |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com