5£®ÔÚ¡÷ABCÖУ¬DΪBC±ßÉϵÄÖе㣬P0ÊDZßABÉϵÄÒ»¸ö¶¨µã£¬P0B=$\frac{1}{4}$AB£¬ÇÒ¶ÔÓÚABÉÏÈÎÒ»µãP£¬ºãÓÐ$\overrightarrow{PB}$•$\overrightarrow{PC}$¡Ý$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$£¬ÔòÏÂÁнáÂÛÖÐÕýÈ·µÄÊǢ٢ڢݣ¨ÌîÉÏËùÓÐÕýÈ·ÃüÌâµÄÐòºÅ£©£®
¢Ùµ±PÓëA£¬B²»ÖغÏʱ£¬$\overrightarrow{PB}$+$\overrightarrow{PC}$Óë$\overrightarrow{PD}$¹²Ïߣ»
¢Ú$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overline{P{D}_{2}}$-$\overrightarrow{D{B}_{2}}$£»
¢Û´æÔÚµãP£¬Ê¹|$\overrightarrow{PD}$|£¼|$\overrightarrow{{P}_{0}D}$|£»
¢Ü$\overrightarrow{{P}_{0}C}$•$\overrightarrow{AB}$=0£»
¢ÝAC=BC£®

·ÖÎö ÓÉÌâÒâ»­³öͼÐΣ¬ÀûÓÃÆ½ÃæÏòÁ¿µÄ¼Ó¼õÔËËã¼°ÊýÁ¿»ýÔËËãÖðÒ»·ÖÎö5¸öÃüÌâµÃ´ð°¸£®

½â´ð ½â£º¡ßDΪBC±ßµÄÖе㣬¡à$\overrightarrow{PB}$+$\overrightarrow{PC}$=2$\overrightarrow{PD}$£¬¹Ê¢ÙÕýÈ·£»
$\overrightarrow{PB}$•$\overrightarrow{PC}$=£¨$\overrightarrow{PD}$+$\overrightarrow{DB}$£©•£¨$\overrightarrow{PD}$+$\overrightarrow{DC}$£©=$\overrightarrow{PD}$2-$\overrightarrow{DB}$2£¬¹Ê¢ÚÕýÈ·£»
ÓÉÌâÒâ¿ÉµÃ$\overrightarrow{{P}_{0}B}•\overrightarrow{{P}_{0}C}$=${\overrightarrow{{P}_{0}D}}^{2}-{\overrightarrow{DB}}^{2}$£¬ÓÉÒÑÖª$\overrightarrow{PB}$•$\overrightarrow{PC}$¡Ý$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$ºã³ÉÁ¢£¬
µÃ${\overrightarrow{PD}}^{2}¡Ý{\overrightarrow{{P}_{0}D}}^{2}$£¬¼´|$\overrightarrow{PD}$|¡Ý|$\overrightarrow{{P}_{0}D}$|ºã³ÉÁ¢£¬¹Ê¢Û´íÎó£»
×¢Òâµ½P0£¬DÊǶ¨µã£¬¡àP0DÊǵãDÓëÖ±ÏßÉϸ÷µã¾àÀëµÄ×îСֵ£¬ÔòP0D¡ÍAB£¬¹Ê$\overrightarrow{{P}_{0}D}$•$\overrightarrow{AB}$=0£¬
ÉèABÖеãΪO£¬ÔòCO¡ÎP0D£¬¹Ê¢Ü´íÎó£»
ÔÙÓÉDΪBCµÄÖе㣬COΪµ×±ßABµÄÖÐÏߣ¬ÇÒCO¡ÍAB£¬¡à¡÷ABCÊǵÈÑüÈý½ÇÐΣ¬ÓÐAC=BC£¬¹Ê¢ÝÕýÈ·£®
×ÛÉÏ¿ÉÖª£¬¢Ù¢Ú¢ÝÕýÈ·£¬
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Ý£®

µãÆÀ ±¾Ì⿼²éÆ½ÃæÏòÁ¿µÄÊýÁ¿»ýÔËË㣬¿¼²éÃüÌâµÄÕæ¼ÙÅжÏÓëÓ¦Ó㬿¼²éÂß¼­Ë¼Î¬ÄÜÁ¦ÓëÍÆÀíÂÛÖ¤ÄÜÁ¦£¬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈôP£¨2£¬-1£©ÎªÔ²£¨x-1£©2+y2=25µÄÏÒABµÄÖе㣬ÔòÖ±ÏßABµÄ·½³ÌΪ£¨¡¡¡¡£©
A£®2x+y-3=0B£®x+y-1=0C£®x-y-3=0D£®2x-y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ô²x2+y2=5ÓëÔ²£¨x-1£©2+£¨y-1£©2=3µÄ¹«¹²ÏÒµÄÏÒ³¤µÈÓÚ£¨¡¡¡¡£©
A£®2$\sqrt{2}$B£®2$\sqrt{5}$C£®$\frac{3\sqrt{7}}{2}$D£®2$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=ax+x2-xlna-b£¨b¡ÊR£¬a£¾0ÇÒa¡Ù1£©£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£®
£¨1£©ÌÖÂÛº¯Êýf£¨x£©ÔÚ£¨0£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£»
£¨2£©µ±a£¾1ʱ£¬Èô´æÔÚx1£¬x2¡Ê[-1£¬1]£¬Ê¹µÃ|f£¨x1£©-f£¨x2£©|¡Ýe-1£¬ÇóʵÊýaµÄȡֵ·¶Î§£®£¨²Î¿¼¹«Ê½£º£¨ax£©¡ä=axlna£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×㣺$f£¨{x+1}£©=\frac{1}{f£¨x£©}$£¬²¢ÇÒ$x¡Ê[{-1£¬1}]£¬f£¨x£©=\left\{{\begin{array}{l}{x+a£¬-1¡Üx£¼0}\\{|{\frac{2}{5}-x}|£¬0¡Üx£¼1}\end{array}}\right.$£¬Èô$f£¨{-\frac{5}{2}}£©=f£¨{\frac{9}{2}}£©$£¬Ôòf£¨5a£©=£¨¡¡¡¡£©
A£®$\frac{7}{16}$B£®$-\frac{2}{5}$C£®$\frac{11}{16}$D£®$\frac{13}{16}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÈýÀâ×¶A-BCDµÄ¸÷¸öÀⳤ¶¼ÏàµÈ£¬E£¬F·Ö±ðÊÇÀâAB£¬CDµÄÖе㣬ÔòEFÓëBCËù³ÉµÄ½ÇÊÇ£¨¡¡¡¡£©
A£®90¡ãB£®60¡ãC£®45¡ãD£®30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªº¯Êýf£¨x£©=|lgx|£¬Èô a¡Ùb£¬ÇÒf£¨a£©=f£¨b£©£¬Ôò ab=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²ÇúÏß·½³ÌΪ${x^2}+\frac{y^2}{n}=1£¨n¡ÊR£©$£¬Á½½¹µã·Ö±ðΪF1£¬F2£®
£¨1£©Èôn=-1£¬¹ý×ó½¹µãΪF1ÇÒбÂÊΪ$\sqrt{3}$µÄÖ±Ïß½»Ô²×¶ÇúÏßÓÚµãA£¬B£¬Çó¡÷ABF2µÄÖܳ¤£®
£¨2£©Èôn=4£¬PÔ²×¶ÇúÏßÉÏÒ»µã£¬ÇóPF1•PF2µÄ×î´óÖµºÍ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÔڵȲîÊýÁÐ{an}ÖУ¬ÒÑÖªa11=3£¨4-a2£©£¬Ôò¸ÃÊýÁеÄǰ11ÏîºÍS11µÈÓÚ£¨¡¡¡¡£©
A£®33B£®44C£®55D£®66

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸