精英家教网 > 高中数学 > 题目详情
10.已知三棱锥A-BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是(  )
A.90°B.60°C.45°D.30°

分析 由题意画出图形,取AC中点G,连接EG,GF,则∠GEF为EF与BC所成的角,设三棱锥A-BCD的各个棱长都是2,然后求解直角三角形得答案.

解答 解:如图,

三棱锥A-BCD的各个棱长都相等,设为2,
取AC中点G,连接EG,GF,则∠GEF为EF与BC所成的角,
且EG=GF=1,BF=$\sqrt{3}$,
正四面体A-BCD的高为$\sqrt{{2}^{2}-(\frac{2\sqrt{3}}{3})^{2}}=\frac{2\sqrt{6}}{3}$,
过E作EH⊥BF于H,则EH=$\frac{\sqrt{6}}{3}$,
∴$EF=\sqrt{(\frac{\sqrt{6}}{3})^{2}+(\frac{2\sqrt{3}}{3})^{2}}=\sqrt{2}$,
∴△EGF是以∠EGF为直角的等腰直角三角形,则∠GEF=45°.
故选:C.

点评 本题考查异面直线所成的角,考查空间想象能力和思维能力,考查计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.函数y=(x+1)•(x-1)在x=1处的导数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)的定义域为D,若对于任意的x1,x2∈D,当x1+x2=2A时,恒有F(x1)+f(x2)=2b,则称(a,b)为函数y=f(x)图象的对称中心,研究函数f(x)=x3+sinx+1的某一个对称中心,并利用对称中心的上述定义,可得到f(-2016)+f(-2015)+f(-2015)+f(-2014)+…+f(2014)+f(2015)+f(2016)=(  )
A.0B.2016C.4032D.4033

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则$\frac{S_7}{a_1}$=(  )
A.-7B.14C.7D.-14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在△ABC中,D为BC边上的中点,P0是边AB上的一个定点,P0B=$\frac{1}{4}$AB,且对于AB上任一点P,恒有$\overrightarrow{PB}$•$\overrightarrow{PC}$≥$\overrightarrow{{P}_{0}B}$•$\overrightarrow{{P}_{0}C}$,则下列结论中正确的是①②⑤(填上所有正确命题的序号).
①当P与A,B不重合时,$\overrightarrow{PB}$+$\overrightarrow{PC}$与$\overrightarrow{PD}$共线;
②$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overline{P{D}_{2}}$-$\overrightarrow{D{B}_{2}}$;
③存在点P,使|$\overrightarrow{PD}$|<|$\overrightarrow{{P}_{0}D}$|;
④$\overrightarrow{{P}_{0}C}$•$\overrightarrow{AB}$=0;
⑤AC=BC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试预测加工10个零件需要多少小时?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-x{\overline{x}}^{2}}$;$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$;)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.幂函数y=f(x)的图象经过点$[2,\frac{1}{4}]$,则其解析式是f(x)=x-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.复数z1,z2在复平面内对应的点关于直线y=x对称,且z1=3+2i,则$\frac{z_1}{z_2}$=(  )
A.$\frac{12}{13}+\frac{5}{13}i$B.$-\frac{12}{13}+\frac{5}{13}i$C.$-\frac{12}{13}-\frac{5}{13}i$D.$\frac{12}{13}-\frac{5}{13}i$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在正项数列{an}中,a1=1,Sn是其前n项和,点An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n>1)在曲线x2-y2=n上,数列{bn}的通项公式为bn=3n-1
(1)求数列{an}的通项公式
(2)设cn=anbn,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案