精英家教网 > 高中数学 > 题目详情
18.设公差不为零的等差数列{an}的前n项和为Sn,若a4=2(a2+a3),则$\frac{S_7}{a_1}$=(  )
A.-7B.14C.7D.-14

分析 由等差数列的通项公式求出a1=-d,由此能求出结果.

解答 解:∵公差不为零的等差数列{an}的前n项和为Sn
a4=2(a2+a3),
∴a1+3d=2(a1+d+a1+2d),
化简,得a1=-d.
∴$\frac{S_7}{a_1}$=$\frac{7{a}_{1}+\frac{7×6}{2}d}{{a}_{1}}$=$\frac{-7d+21d}{-d}$=-14.
故选:D.

点评 本题考查等比数列的前7项和与首项和比值的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.函数f(x)=x+lnx-2的零点的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知关于x的不等式$\frac{ax-6}{x-a}<0$的解集为M.
(1)当a=2时,求集合M;
(2)若2∈M且6∈M,求实数a的取值范围.
(3)不等式|x-8|≥2的解集为S,若M∪S=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某种商品在近30天内每件的销售价格P(元)与时间t(天)的函数关系p=$\left\{\begin{array}{l}{t+20,0<t<25,t∈{N}^{*}}\\{-t+70,25≤t≤30,t∈{N}^{*}}\end{array}\right.$
该商品的日销售量Q(件)时间t(天)的函数关系Q=-t+40(0<t≤30,t∈N*
求该商品的日销售额的最大值,并指出日销售额最大一天是30天中的第几天?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=ax+x2-xlna-b(b∈R,a>0且a≠1),e是自然对数的底数.
(1)讨论函数f(x)在(0,+∞)上的单调性;
(2)当a>1时,若存在x1,x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,求实数a的取值范围.(参考公式:(ax)′=axlna)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+{y^2}$=1(常数a>1),过点A(-a,0)且以t为斜率的直线与椭圆E交于点B,直线BO交椭圆E于点C(O坐标原点).
(1)求以t为自变量,△ABC的面积S(t)的函数解析式;
(2)若$a=2,t∈[{\frac{1}{2},1}]$,求S(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知三棱锥A-BCD的各个棱长都相等,E,F分别是棱AB,CD的中点,则EF与BC所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)满足f(-x)=f(x),当 a,b∈(-∞,0]时,总有$\frac{f(a)-f(b)}{a-b}$>0(a≠b),若f(m+1)>f(2m),则实数m的取值范围是(-∞,$-\frac{1}{3}$)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=ax+b的零点是2,则函数g(x)=bx2-ax的零点是x=0,或x=-$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案