精英家教网 > 高中数学 > 题目详情
20.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=3x
(1)求 f(x),g(x);
(2)若对于任意实数t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求实数a的取值范围;
(3)若存在m∈[-2,-1],使得不等式af(m)+g(2m)<0成立,求实数a的取值范围.

分析 (1)将-x代入已知等式,利用函数f(x)、g(x)的奇偶性,得到关于f(x)与g(x)的又一个方程,将二者看做未知数解方程组,解得f(x)和g(x);
(2)由(1)和t的范围化简不等式f(2t)+ag(t)<0,分离出a后构造函数,由指数函数的单调性求出最小值,根据恒成立求出实数a的取值范围;
(3)由(1)和m的范围化简不等式af(m)+g(2m)<0,分离出a后构造函数,利用换元法法,由函数的单调性求出最小值,根据存在性问题求出实数a的取值范围;

解答 解:(1)∵f(x)、g(x)分别是奇函数、偶函数,
∴f(-x)=-f(x),g(-x)=g(x),
令x取-x,代入f(x)+g(x)=3x ①,
f(-x)+g(-x)=3-x,即-f(x)+g(x)=3-x ②,
由①②解得,f(x)=$\frac{1}{2}({3}^{x}-{3}^{-x})$,g(x)=$\frac{1}{2}({3}^{x}+{3}^{-x})$;
(2)由(1)可得,不等式f(2t)+ag(t)<0为:
不等式$\frac{1}{2}({3}^{2t}-{3}^{-2t})$+a•$\frac{1}{2}({3}^{t}+{3}^{-t})$<0,
化简得,(3t-3-t)+a<0,即a<-3t+3-t
∵任意实数t∈[0,1],不等式f(2t)+ag(t)<0恒成立,
且函数y=-3t+3-t在[0,1]上递减,∴y≥$-\frac{8}{3}$,即a<$-\frac{8}{3}$
则实数a的取值范围是(-∞,$-\frac{8}{3}$);
(3)由(1)可得,不等式af(m)+g(2m)<0为:
a•$\frac{1}{2}({3}^{m}-{3}^{-m})$+$\frac{1}{2}({3}^{2m}+{3}^{-2m})$<0,
∵m∈[-2,-1],∴$\frac{1}{2}({3}^{m}-{3}^{-m})<0$,则化简得,
a>$\frac{{3}^{-2m}+{3}^{2m}}{{3}^{-m}-{3}^{m}}$=$\frac{{(3}^{-m}-{3}^{m})^{2}+2}{{3}^{-m}-{3}^{m}}$=${3}^{-m}-{3}^{m}+\frac{2}{{3}^{-m}-{3}^{m}}$,
令t=3-m-3m,∵m∈[-2,-1],∴t∈[$\frac{8}{3}$,$\frac{80}{9}$],
则a>$t+\frac{2}{t}$,
∴存在m∈[-2,-1],使得不等式af(m)+g(2m)<0成立等价于:
存在t∈[$\frac{8}{3}$,$\frac{80}{9}$],使得不等式a>$t+\frac{2}{t}$成立,
∵$t+\frac{2}{t}≥2\sqrt{t×\frac{2}{t}}$=$2\sqrt{2}$,当且仅当$t=\frac{2}{t}$,即t=$\sqrt{2}$时取等号,
∴函数y=$t+\frac{2}{t}$在[$\frac{8}{3}$,$\frac{80}{9}$]递增,则函数y=$t+\frac{2}{t}$的最小值是$\frac{41}{12}$,
即a>$\frac{41}{12}$,故实数a的取值范围是($\frac{41}{12}$,+∞).

点评 本题考查了函数奇偶性的性质的应用,列方程组法求函数的解析式,以及恒成立和存在性问题的转化,考查了构造函数法,分离常数法,换元法等,转化思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知函数$f(x)=4cosωxcos(ωx+\frac{π}{3}),(ω>0)$的最小正周期为π.
(1)求ω的值;  
(2)讨论f(x)在区间$[{0,\frac{5π}{6}}]$上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知θ是钝角,且$sinθ=\frac{1}{3}$,则$cos({\frac{π}{2}+2θ})$的值为$\frac{{4\sqrt{2}}}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.过点P(-2,2)且垂直于直线2x-y+1=0的直线方程为(  )
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如表:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(2)试预测加工10个零件需要多少小时?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-x{\overline{x}}^{2}}$;$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$;)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设P和0是两个集合,定义集合P•Q={x|x∈P,且x≠Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P•Q等于(0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知偶函数f(x)在[1,4]上是单调增函数,则f(-π)>$f({{{log}_2}\frac{1}{8}})$.(填“>”或“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.数列{an}满足a1=1,an+1•an+2nan+1=2n+1an(n∈N+).
(1)证明:数列$\{\frac{2^n}{a_n}\}$是等差数列,并求出数列{an}的通项公式;
(2)设bn=(2n-1)(n+1)an,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.长方体ABCD-A1B1C1D1的各个顶点都在体积为$\frac{32π}{3}$的球O 的球面上,其中AA1=2,则四棱锥O-ABCD 的体积的最大值为2.

查看答案和解析>>

同步练习册答案