精英家教网 > 高中数学 > 题目详情
8.过点P(-2,2)且垂直于直线2x-y+1=0的直线方程为(  )
A.2x+y+2=0B.2x+y-5=0C.x+2y-2=0D.x-2y+7=0

分析 先求出要求直线的斜率,再用点斜式求出要求直线的方程.

解答 解:由于直线2x-y+1=0的斜率为2,故要求直线的斜率为-,
利用点斜式求得过点P(-2,2)且垂直于直线2x-y+1=0的直线的方程为 y-2=-$\frac{1}{2}$(x+2),
即 x+2y-2=0.
故选C.

点评 本题主要考查两直线垂直的性质,用点斜式求直线的方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.用数学归纳法证明:1+$\frac{1}{1+2}$+$\frac{1}{1+2+3}$+…+$\frac{1}{1+2+3+…+n}$=$\frac{2n}{n+1}$时,由n=k到n=k+1左边需要添加的项是$\frac{2}{(k+1)(k+2)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=$\frac{{x}^{2}+ax+b}{x}$(x≠0)是奇函数,且满足f(1)=f(4)
(1)求实数a,b的值;
(2)试证明函数f(x)在区间(0,2]上单调递减;
(3)是否存在实数k同时满足以下两个条件:①不等式f(x)+$\frac{2k}{3}$>0对x∈(0,+∞)恒成立;②方程f(x)=k在x∈[-6,-1]上有解?若存在,试求出实数k的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知集合A=$\left\{{x|{lgx}≤0}\right\},B=\left\{{x|\frac{1}{2}≤x≤3}\right\}$,则A∩B=(  )
A.(0,3]B.(1,2]C.(1,3]D.$[{\frac{1}{2},1}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆E:$\frac{x^2}{a^2}+{y^2}$=1(常数a>1),过点A(-a,0)且以t为斜率的直线与椭圆E交于点B,直线BO交椭圆E于点C(O坐标原点).
(1)求以t为自变量,△ABC的面积S(t)的函数解析式;
(2)若$a=2,t∈[{\frac{1}{2},1}]$,求S(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤4}\\{x-y-3≤0}\end{array}\right.$则目标函数z=2x+y的最大值为7.5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知f(x),g(x)分别是定义在R上的奇函数和偶函数,且f(x)+g(x)=3x
(1)求 f(x),g(x);
(2)若对于任意实数t∈[0,1],不等式f(2t)+ag(t)<0恒成立,求实数a的取值范围;
(3)若存在m∈[-2,-1],使得不等式af(m)+g(2m)<0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率$e=\frac{{\sqrt{3}}}{2},A、B$,分别是椭圆的左、右顶点,点P是椭圆上的一点,直线PA、PB的倾斜角分别为α、β满足tanα+tanβ=1,则直线PA的斜率为$\frac{{1±\sqrt{2}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.过点M(2,2)的直线与抛物线L:x2=2py相交于不同两点A,B,若点M恰为线段AB的中点,则实数p的取值范围是(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,1)C.(1,+∞)D.(1,2)

查看答案和解析>>

同步练习册答案