分析 根据θ是钝角可以求得cosθ的值,然后利用诱导公式和二倍角公式对$cos({\frac{π}{2}+2θ})$进行变换并代入求值即可.
解答 解:∵θ是钝角,且$sinθ=\frac{1}{3}$,
∴cosθ=-$\sqrt{1-\frac{1}{9}}$=-$\frac{2\sqrt{2}}{3}$,
∴$cos({\frac{π}{2}+2θ})$=-2sinθcosθ=-2×$\frac{1}{3}$×(-$\frac{2\sqrt{2}}{3}$)=$\frac{{4\sqrt{2}}}{9}$.
故答案是:$\frac{{4\sqrt{2}}}{9}$.
点评 本题考查了三角函数的化简求值,注意诱导公式和二倍角公式的合理应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,3] | B. | (1,2] | C. | (1,3] | D. | $[{\frac{1}{2},1}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com