分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的增区间,求得函数f(x)的单调递增区间.
(2)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域求得g(x)在[0,2π]上的值域.
解答 解:(1)根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得A=2,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,可得y=2sin[2(x-$\frac{π}{6}$)x+$\frac{π}{6}$]=2sin(2x-$\frac{π}{6}$) 的图象;
再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$) 的图象.
∵x∈[0,2π],∴$\frac{x}{2}$-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴sin($\frac{1}{2}$x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],即y=g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$)∈[-1,2].
点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的增区间,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com