精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式和单调递增区间;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,2π]上的值域.

分析 (1)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式,再利用正弦函数的增区间,求得函数f(x)的单调递增区间.
(2)根据函数y=Asin(ωx+φ)的图象变换规律,求得g(x)的解析式,再利用正弦函数的定义域和值域求得g(x)在[0,2π]上的值域.

解答 解:(1)根据函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象,
可得A=2,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{5π}{12}$-$\frac{π}{6}$,∴ω=2.
再根据五点法作图可得2•$\frac{π}{6}$+φ=$\frac{π}{2}$,∴φ=$\frac{π}{6}$,f(x)=2sin(2x+$\frac{π}{6}$).
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,故函数的增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,可得y=2sin[2(x-$\frac{π}{6}$)x+$\frac{π}{6}$]=2sin(2x-$\frac{π}{6}$) 的图象;
再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$) 的图象.
∵x∈[0,2π],∴$\frac{x}{2}$-$\frac{π}{6}$∈[-$\frac{π}{6}$,$\frac{5π}{6}$],∴sin($\frac{1}{2}$x-$\frac{π}{6}$)∈[-$\frac{1}{2}$,1],即y=g(x)=2sin($\frac{1}{2}$x-$\frac{π}{6}$)∈[-1,2].

点评 本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,正弦函数的增区间,函数y=Asin(ωx+φ)的图象变换规律,正弦函数的定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.在椭圆$\frac{{x}^{2}}{3}$+y2=1中,有一沿直线运动的粒子从一个焦点F2出发经椭圆反射后经过另一个焦点F1,再次被椭圆反射后又回到F2,则该粒子在整个运动过程中经过的距离为4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.关于直线l:x+1=0,以下说法正确的是(  )
A.直线l倾斜角为0B.直线l倾斜角不存在
C.直线l斜率为0D.直线l斜率不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若角α的终边过点(2sin30°,2cos30°),则sinα的值等于(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.双曲线$\left\{\begin{array}{l}{x=2\sqrt{3}tanθ}\\{y=3\sqrt{2}secθ}\end{array}\right.$的焦点坐标是(0,±$\sqrt{30}$),渐近线方程是y=±$\frac{\sqrt{6}}{2}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在平面直角坐标系xOy中,椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,直线y=x被椭圆C截得的线段长为$\frac{{8\sqrt{3}}}{3}$.
( I)求椭圆C的方程.
(Ⅱ)直线l是圆O:x2+y2=r2的任意一条切线,l与椭圆C交于A、B两点,若以AB为直径的圆恒过原点,求圆O的方程,并求出|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)=$\left\{\begin{array}{l}{1,x为有理数}\\{0,x为无理数}\end{array}\right.$被称为狄利克雷函数,则关于函数f(x)有如下四个命题:
①f(f(x))=0;                  
②函数f(x)是偶函数;
③任取一个不为零的有理数T,f(x+T)=f(x)对任意的x∈R恒成立;
④存在三个点A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3)),使得△ABC为等边三角形.
其中正确命题的序号有②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设集合A={1,2,3},B={2,3,x},A∪B={1,2,3,4},则x=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.点M(x,y)在函数y=2x+8的图象上,当x∈[-3,5]时,
(1)求$\frac{y+1}{x+1}$的取值范围;
(2)求$\frac{2y+1}{x-6}$的取值范围;
(3)求$\frac{2x+1}{y-5}$的取值范围.

查看答案和解析>>

同步练习册答案