精英家教网 > 高中数学 > 题目详情
18.在椭圆$\frac{{x}^{2}}{3}$+y2=1中,有一沿直线运动的粒子从一个焦点F2出发经椭圆反射后经过另一个焦点F1,再次被椭圆反射后又回到F2,则该粒子在整个运动过程中经过的距离为4$\sqrt{3}$.

分析 求得椭圆的a,由椭圆的定义可得椭圆上一点P满足|PF1|+|PF2|=2a,由题意可得该粒子在整个运动过程中经过的距离为4a,即可得到所求值.

解答 解:椭圆$\frac{{x}^{2}}{3}$+y2=1的a=$\sqrt{3}$,
由椭圆的定义可得椭圆上一点P
满足|PF1|+|PF2|=2a=2$\sqrt{3}$,
由题意可得该粒子在整个运动过程中
经过的距离为4a=4$\sqrt{3}$.
故答案为:4$\sqrt{3}$.

点评 本题考查椭圆的定义、方程和性质,主要是定义法和运用,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如图频数分布直方图:
该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.

(1)记选取的2组数据相隔的月份数为X,若是相邻2组的数据,则X=0,求X的分布列及数学期望;
(2)已知选取的是1月与6月的两组数据.
(i)请根据2至5月份的数据,求出就诊人数y关于昼夜温差x的线性回归方程;
(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?
(参考公式:$\widehat{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$),$\widehat{a}$=$\overline{y}$-b$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知A(2,5),B(4,1),若点P(x,y)在线段AB上,则2x-y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知点P是△ABC所在平面内一点,且$\overrightarrow{BP}$=λ$\overrightarrow{BC}$+μ$\overrightarrow{BA}$,那么S△BCP=$\frac{1}{3}$S△ABC的充要条件是$μ=\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆的方程为:$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1,若C为椭圆上一点,F1,F2分别为椭圆的左,右焦点,并且|CF1|=2,则|CF2|=8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=2,求$\frac{3sinα+4cosα}{2sinα-cosα}$=$\frac{10}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.求函数y=sin2x+5cosx-3的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.化简sin510°的值是(  )
A.0.5B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.-0.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式和单调递增区间;
(2)将函数y=f(x)的图象向右平移$\frac{π}{6}$个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在[0,2π]上的值域.

查看答案和解析>>

同步练习册答案