精英家教网 > 高中数学 > 题目详情

已知函数f(x)=2x--aln(x+1),a∈R.
(1)若a=-4,求函数f(x)的单调区间;
(2)求y=f(x)的极值点(即函数取到极值时点的横坐标).

(1)f(x)的单调增区间为(-1,3), 单调减区间为(3,+∞)。
(2)
ⅰ. 7分
ⅱ.当时,若,由函数的单调性可知f(x)有极小值点;有极大值点。若时, f(x)有极大值点,无极小值点。

解析试题分析:(1)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,
故,f(x)的单调增区间为(-1,3), 单调减区间为(3,+∞)。
(2)因为,f(x)=2x--aln(x+1),a∈R,定义域为(-1,+∞)。
所以,
=0有实根的条件是
ⅰ.  
ⅱ.当时,若 f(x)有极小值点;有极大值点。若时, f(x)有极大值点,无极小值点。
考点:应用导数研究函数的单调性、极值。
点评:中档题,研究函数的单调性、极值、最值等,是导数应用的基本问题。求函数的单调区间,主要研究导函数非负,确定增区间;利用导函数值非正,确定减区间。求函数的极值,遵循“求导数,求驻点,研究单调性,求极值”。本题(2)需要对a进行分类讨论,易出错。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数(1)若,求函数的极值;
(2)若函数上单调递减,求实数的取值范围;
(3)在函数的图象上是否存在不同的两点,使线段的中点的横坐标与直线的斜率之间满足?若存在,求出;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)当时,讨论的单调性;
(II)若时,,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极小值;
(Ⅱ)设函数,试问:在定义域内是否存在三个不同的自变量使得的值相等,若存在,请求出的范围,若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)若,证明
(2)若不等式都恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,一矩形铁皮的长为8cm,宽为5cm,在四个角上截去四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长为多少时,盒子容积最大?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知实数a满足1<a≤2,设函数f (x)=x3x2+a x.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ) 若函数g(x)=4x3+3bx2-6(b+2)x  (b∈R) 的极小值点与f (x)的极小值点相同,
求证:g(x)的极大值小于或等于10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅲ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

同步练习册答案