精英家教网 > 高中数学 > 题目详情
设x>1,求函数y=
(x-1)5
(10x-6)9
的最大值.
考点:基本不等式
专题:导数的概念及应用
分析:本题求最大值,转化为利用导数求函数的最值问题.
解答: 解:∵y=
(x-1)5
(10x-6)9

∴y′=-
20(x-1)4(2x-3)
(10x-6)10

令y′=0,则x=
3
2

当y′>0时,即1<x<
3
2
,函数为增函数,
当y′<0时,即x
3
2
,函数为减函数,
故x=
3
2
,函数有最大值,
ymax=
(
3
2
-1)5
(10×
3
2
-6)10
=
1
25×99
点评:本题考查了利用导数求函数的最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知-1<a<2,0<b<3,则a-b的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
x+y≤1
y≤x
y≥-2
,则z=3x+y的最小值为(  )
A、-10B、-8C、2D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

cos(π+α)=(  )
A、cosαB、-cosα
C、sinαD、-sinα

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在区间[-1,1]上的函数f(x)=
2x+b
x2+1
为奇函数.
(1)求实数b的值.
(2)判断函数f(x)在区间(-1,1)上的单调性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知曲线C上任意一点P到两定点F1(-1,0)与F2(1,0)的距离之和为4.
(Ⅰ)求曲线C的方程;
(Ⅱ)设曲线C与x轴负半轴交点为A,过点M(-4,0)作斜率为k的直线l交曲线C于B、C两点(B在M、C之间),N为BC中点.
(ⅰ)证明:k•kON为定值;
(ⅱ)是否存在实数k,使得F1N⊥AC?如果存在,求直线l的方程,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga
mx+1
x-1
(a>1)为奇函数
(1)求实数m的值;
(2)指出函数y=f(x)的单调区间(无需证明);
(3)若仅有一个常数c使得对于任意的s∈[a,2014a],都有t∈[a,a2]满足方程f(
s+1
s-1
)+f(
t+1
t-1
)=c
,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在(
x
2
-
1
x
6的展开式中,求:
(1)第5项的系数;  
(2)常数项.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右顶点分别为A,B,左、右焦点分别为F1,F2,点M在椭圆上,且直线MA,MB的斜率之积为-
1
4

(1)求椭圆的离心率;
(2)若点M又在以线段F1F2为直径的圆上,且△MAB的面积为
2
3
3

求椭圆的方程.

查看答案和解析>>

同步练习册答案