9£®ÒÑÖªÅ×ÎïÏßÉÏÒ»µãA£¨2£¬1£©µ½½¹µãµÄ¾àÀëΪ2£®
£¨1£©ÇóÅ×ÎïÏߵķ½³Ì£»
£¨2£©¹ýµãQ£¨0£¬-2£©ÈÎ×÷Ò»¶¯Ö±Ïß½»Å×ÎïÏßÓÚM¡¢NÁ½µã£¬¼Ç$\overrightarrow{QM}$=$¦Ë\overrightarrow{NQ}$£¬ÈôÔÚÖ±ÏßÉÏȡһµãR£¬Ê¹µÃ$\overrightarrow{RM}$=$-¦Ë\overrightarrow{NR}$£¬ÊÔÅжϵ±Ö±ÏßÔ˶¯Ê±£¬µãRÊÇ·ñÔÚijһ¹ì¼£ÉÏÔ˶¯£¬ÈôÊÇ£¬Çó³ö¸Ã¹ì¼£µÄ·½³Ì£»Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÒÑÖª¿ÉµÃÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³Ì£»
£¨2£©ÓÉÌâÒâÖªÖ±ÏßMNµÄбÂʱشæÔÚ£¬ÉèÆäÖ±Ïß·½³ÌΪy=kx-2£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏߺÍÅ×ÎïÏß·½³Ì£¬µÃx2-4kx+8=0£¬ÓÉ´ËÀûÓÃÏòÁ¿ÖªÊ¶¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öµãRÔÚ¶¨Ö±Ïßy=2ÉÏ

½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßÉÏÒ»µãA£¨2£¬1£©µ½½¹µãµÄ¾àÀëΪ2£®
¹ÊµãA£¨2£¬1£©µ½×¼ÏߵľàÀëҲΪ2£¬
¹ÊÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬
¹ÊÅ×ÎïÏߵķ½³ÌΪ£ºx2=4y
£¨2£©ÓÉÌâÒâÖªÖ±ÏßMNµÄбÂʱشæÔÚ£¬ÉèÆäÖ±Ïß·½³ÌΪy=kx-2£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x}^{2}=4y\\ y=kx-2\end{array}\right.$£¬
ÏûÈ¥y£¬µÃx2-4kx+8=0£¬
¡à¡÷=16£¨k2-2£©£¾0£¬
x1+x2=4k£¬x1x2=8£¬
ÓÉ$\overrightarrow{QM}$=$¦Ë\overrightarrow{NQ}$£¬µÃx1=-¦Ëx2£¬
½âµÃ¦Ë=-$\frac{{x}_{1}}{{x}_{2}}$£¬
ÉèµãRµÄ×ø±êΪ£¨x0£¬y0£©£¬ÔòÓÉ$\overrightarrow{RM}$=$-¦Ë\overrightarrow{NR}$£¬
µÃx1-x0=-¦Ë£¨x0-x2£©£¬
½âµÃx0=$\frac{{¦Ëx}_{2}-{x}_{1}}{¦Ë-1}$=$\frac{{-\frac{{x}_{1}}{{x}_{2}}•x}_{2}-{x}_{1}}{-\frac{{x}_{1}}{{x}_{2}}-1}$=$\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{4}{k}$£¬
Ôòy0¨Tkx0-2=2£¬
¹ÊµãRÔÚ¶¨Ö±Ïßy=2ÉÏ£®

µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éµãÊÇ·ñÔÚÔÚ¶¨Ö±ÏßÉϵÄÅжÏÓëÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓÃ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÔÚ¡÷ABCÖУ¬ÈôtanA=-2£¬ÔòcosA=$-\frac{{\sqrt{5}}}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®½¹µãÔÚ×ø±êÖáÉÏ£¬ÇÒ¹ýÁ½µã£¨4£¬3£©£¬£¨6£¬2£©µÄÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{52}+\frac{{y}^{2}}{13}$=1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®É輯ºÏM=£¨-¡Þ£¬m]£¬P=$\{y|y={x^2}-x-\frac{3}{4}£¬x¡ÊR\}$£¬ÈôM¡ÉP=∅£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇm£¼-1£®£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õµÄº¯ÊýÊÇ£¨¡¡¡¡£©
A£®y=lnxB£®y=x2C£®y=$\frac{1}{x}$-xD£®y=2-|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªPΪµ¥Î»Ô²ÉÏÈÎÒ»µã£¬Èô´æÔÚ¶¨µãM£¬Ê¹µÃÖ±ÏßPMµÄбÂÊȡֵ·¶Î§Îª[0£¬$\sqrt{3}$]£¬Ôò¸Ã¶¨µãMµÄ×ø±êΪ£¨-$\sqrt{3}$£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÒÑÖªf£¨x£©=$\left\{\begin{array}{l}{{2}^{x}+1£¬x¡Ü0}\\{{log}_{2}£¨x+1£©£¬x£¾0}\end{array}\right.$
£¨1£©×÷³öº¯Êýf£¨x£©µÄͼÏ󣬲¢Ð´³öµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êýy=f£¨x£©-mÓÐÁ½¸öÁãµã£¬ÇóʵÊýmµÄȡֵ·¶Óã®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒan£¾0£¬Sn=£¨$\frac{{a}_{n}+1}{2}$£©2£¨n¡ÊN+£©£¬
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=$\frac{{a}_{n}+1}{2£¨{2}^{{a}_{n}}-1£©}$£¬ÊýÁÐ{bn}µÄǰnÏîºÍΪTn£®
¢ÙÇóÖ¤£º$\frac{{b}_{n}}{{S}_{n}}$¡Ü$\frac{1}{n•{4}^{n-1}}$£»
¢ÚÇóÖ¤£º1¡ÜTn£¼$\frac{16}{9}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®º¯Êýf£¨x£©=x2-4x-2ÔÚ±ÕÇø¼ä[0£¬m]ÉÏÓÐ×î´óÖµ-2£¬×îСֵ-6£¬ÔòmµÄȡֵ·¶Î§ÊÇ[2£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸