·ÖÎö £¨1£©ÓÉÒÑÖª¿ÉµÃÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬½ø¶øµÃµ½Å×ÎïÏߵķ½³Ì£»
£¨2£©ÓÉÌâÒâÖªÖ±ÏßMNµÄбÂʱشæÔÚ£¬ÉèÆäÖ±Ïß·½³ÌΪy=kx-2£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢Ö±ÏߺÍÅ×ÎïÏß·½³Ì£¬µÃx2-4kx+8=0£¬ÓÉ´ËÀûÓÃÏòÁ¿ÖªÊ¶¡¢Î¤´ï¶¨Àí£¬½áºÏÒÑÖªÌõ¼þÄÜÇó³öµãRÔÚ¶¨Ö±Ïßy=2ÉÏ
½â´ð ½â£º£¨1£©¡ßÅ×ÎïÏßÉÏÒ»µãA£¨2£¬1£©µ½½¹µãµÄ¾àÀëΪ2£®
¹ÊµãA£¨2£¬1£©µ½×¼ÏߵľàÀëҲΪ2£¬
¹ÊÅ×ÎïÏßµÄ×¼ÏßΪy=-1£¬
¹ÊÅ×ÎïÏߵķ½³ÌΪ£ºx2=4y
£¨2£©ÓÉÌâÒâÖªÖ±ÏßMNµÄбÂʱشæÔÚ£¬ÉèÆäÖ±Ïß·½³ÌΪy=kx-2£¬
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{x}^{2}=4y\\ y=kx-2\end{array}\right.$£¬
ÏûÈ¥y£¬µÃx2-4kx+8=0£¬
¡à¡÷=16£¨k2-2£©£¾0£¬
x1+x2=4k£¬x1x2=8£¬
ÓÉ$\overrightarrow{QM}$=$¦Ë\overrightarrow{NQ}$£¬µÃx1=-¦Ëx2£¬
½âµÃ¦Ë=-$\frac{{x}_{1}}{{x}_{2}}$£¬
ÉèµãRµÄ×ø±êΪ£¨x0£¬y0£©£¬ÔòÓÉ$\overrightarrow{RM}$=$-¦Ë\overrightarrow{NR}$£¬
µÃx1-x0=-¦Ë£¨x0-x2£©£¬
½âµÃx0=$\frac{{¦Ëx}_{2}-{x}_{1}}{¦Ë-1}$=$\frac{{-\frac{{x}_{1}}{{x}_{2}}•x}_{2}-{x}_{1}}{-\frac{{x}_{1}}{{x}_{2}}-1}$=$\frac{2{x}_{1}{x}_{2}}{{x}_{1}+{x}_{2}}$=$\frac{4}{k}$£¬
Ôòy0¨Tkx0-2=2£¬
¹ÊµãRÔÚ¶¨Ö±Ïßy=2ÉÏ£®
µãÆÀ ±¾Ì⿼²éÅ×ÎïÏß·½³ÌµÄÇ󷨣¬¿¼²éµãÊÇ·ñÔÚÔÚ¶¨Ö±ÏßÉϵÄÅжÏÓëÇ󷨣¬½âÌâʱҪעÒ⺯ÊýÓë·½³Ì˼ÏëµÄºÏÀíÔËÓÃ
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | y=lnx | B£® | y=x2 | C£® | y=$\frac{1}{x}$-x | D£® | y=2-|x| |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com