精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,过左焦点F(-
3
,0)且斜率为k的直线交椭圆于A,B两点,线段AB的中点为M,直线l:x+4ky=0交椭圆E于C,D两点.
(1)求椭圆E的方程;
(2)求证:点M在直线l上;
(3)若△BDM的面积是△ACM面积的3倍,求斜率k的值.
考点:直线与圆锥曲线的关系,椭圆的标准方程
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:(1)由焦点可得c,再由离心率公式和a,b,c的关系,求出a,b,即可得到椭圆方程;
(2)联立直线方程和椭圆方程,消去y,运用韦达定理和中点坐标公式,求得点M的坐标,即可得证;
(3)联立直线方程和椭圆方程,消去x,解得C的纵坐标,再由面积关系,得到方程,解出即可.
解答: (1)解:左焦点F(-
3
,0),则c=
3

离心率为
3
2
,则
c
a
=
3
2
,即有a=2,b=1,
则椭圆方程
x2
4
+y2=1;
(2)证明:设A(x1,y1),B(x2,y2),M(x0,y0
设直线AB:y=k(x+
3
),
y=k(x+
3
)
x2+4y2=4
消去y,得(1+4k2)x2+8
3
k2x+12k2-4=0,
所以x1+x2=-
8
3
k2
1+4k2
,x0=
x1+x2
2
=-
4
3
k2
1+4k2

y0=k(x0+
3
)=
3
k
1+4k2

因为
-4
3
k2
1+4k2
+4k•
3
k
1+4k2
=0,所以点M在直线l上;
(3)解:由(2)知点A到直线CD的距离与点B到直线CD的距离相等,
因△BDM的面积是△ACM面积的3倍,所以DM=3CM,又|OD|=|OC|,
于是M是OC的中点,
设点C的坐标为(x3,y3) 则y0=
y3
2

因为
x=-4ky
x2+4y2=4
,解得y3=
1
1+4k2

于是
1
2
1+4k2
=
3
k
1+4k2
,解得k2=
1
8

所以k=±
2
4
点评:本题考查椭圆的方程和性质,考查联立直线方程和椭圆方程,消去未知数,运用韦达定理,中点坐标公式,考查运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四边形ABCD是矩形,BC⊥平面ABEF,四边形ABEF是梯形,∠EFA=∠FAB=90°,EF=FA=AD=1,AB=2,点M是DF的中点.
(Ⅰ)求证:BF∥平面AMC,
(Ⅱ)求二面角B-AC-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=x2-2|x|,则满足f[f(x)]=-
1
2
的实数x的个数为(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2x3-ax2+6在x=1时取得极值
(1)求a的值,并求函数f(x)的单调区间;
(2)求函数f(x)的极大值和极小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,E为PC的中点,证明:EB∥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的离心率e=
2
3
3
,经过A(a,0),B(0,-b)两点的直线l与原点的距离d=
3
2

(1)求双曲线C的方程;
(2)直线y=kx+5与双曲线C交于M,N两点,若|BM|=|BN|,求斜率k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在Rt△ABC中,AC=1,BC=x,D为斜边AB的中点.将△BCD沿直线CD翻折.若在翻折过程中存在某个位置,使得CB⊥AD,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若cos(α-
π
6
)=
4
5
,则sin(2α+
π
6
)的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

某公园的摩天轮观览车主架示意图如图所示,其中O为轮轴中心,距地面32m(即OM长),巨轮半径为30m,AM=BP=2m,巨轮逆时针旋转且12分钟转动一圈.若点M为P的初始位置(O,A,M共线),经过t分钟,该吊舱P距地面的高度为h(t),则h(t)=
 

查看答案和解析>>

同步练习册答案