精英家教网 > 高中数学 > 题目详情
7.解关于x的不等式 $\frac{ax}{x-1}<\frac{a-1}{x-1}$(a∈R)

分析 讨论a=0与a>0和a<0时,对应不等式的解集是什么,分别求出即可.

解答 解:原不等式可化为(x-1)[ax-(a-1)]<0,
(1)当a=0时,原不等式为x-1<0,即x<1.
(2)当a≠0时,方程(x-1)[ax-(a-1)]=0的两根为x1=1,x2=$\frac{a-1}{a}$,所以1-$\frac{a-1}{a}$=$\frac{1}{a}$.
①当a>0时,$\frac{1}{a}$>0,所以1>$\frac{a-1}{a}$.
此时不等式的解集为{x|$\frac{a-1}{a}$<x<1};
②当a<0时,$\frac{1}{a}$<0,所以1<$\frac{a-1}{a}$.
此时原不等式化为(x-1)[-ax+(a-1)]>0,不等式的解集为{x|x>$\frac{a-1}{a}$,或x<1}.
综上所述,当a>0时,不等式的解集为{x|$\frac{a-1}{a}$<x<1};
当a=0时,不等式的解集为{x|x<1};
当a<0时,不等式的解集为{x|x>$\frac{a-1}{a}$,或x<1}.

点评 本题考查了含有字母系数的不等式的解法与应用问题,解题时应对字母系数进行讨论,是中档题目

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow a=({sinx,\sqrt{3}cosx})$,$\overrightarrow b=({cosx,-cosx})$,函数f(x)=$\overrightarrow a•\overrightarrow b+\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求函数y=f(x)图象的对称轴方程;
(Ⅱ)若方程f(x)=$\frac{1}{3}$在(0,π)上的解为x1,x2,求cos(x1-x2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,四边形ABCD为正方形,PD⊥平面ABCD,CE⊥平面ABCD,CE=AB,PD=λCE(λ>1)
(1)求证:PE⊥AD
(2)若该几何体的体积被平面BED分成VB-CDE:V多面体ABDEP=1:4的两部分,求λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{2}cosφ\\ y=sinφ\end{array}\right.$,(其中φ为参数),曲线${C_2}:{x^2}+{y^2}-2y=0$,以原点O为极点,x轴的正半轴为极轴建立极坐标系,射线l:θ=α(ρ≥0)与曲线C1,C2分别交于点A,B(均异于原点O)
(1)求曲线C1,C2的极坐标方程;
(2)当$0<a<\frac{π}{2}$时,求|OA|2+|OB|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=$\frac{\sqrt{2{x}^{2}+1}}{\sqrt{5-x}}$+$\sqrt{x-2}$的定义域为集合A,且B={x|-3<x-4<4},C={x|x<a-1或x>a}.
(1)求A和(∁RA)∩B;
(2)若A∪C=R,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在棱长为1的正方体ABCD-A1B1C1D1中,E、F分别为棱AA1、BB1的中点,G为棱A1B1上的一点,且A1G=λ(0≤λ≤1),则点G到平面D1EF的距离为$\frac{{\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知命题p:3≥3;q:3>4,则下列选项正确的是(  )
A.p或q为假,p且q为假,非p为真B.p或q为真,p且q为假,非 p为真
C.p或q为假,p且q为假,非p为假D.p或q为真,p且q为假,非p为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用秦九韶算法求f(x)=3x5+8x4-3x3+5x2+12x-6,当x=2时,V3的值为(  )
A.55B.56C.57D.58

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠BAD=60°,AB=2AD,PD⊥底面ABCD.
(1)求证:AD⊥PB;
(2)若PD=AD=1,求三棱锥D-PAB的高.

查看答案和解析>>

同步练习册答案