ÉèбÂÊΪk1µÄÖ±Ïßl1ÓëÍÖÔ²
x2
2
+y2=1½»ÓÚ²»Í¬µÄA¡¢BÁ½µã£¬Ö±Ïßy=k2xÓëÖ±Ïßl1µÄ½»µãΪM£¬£¨k1¡Ùk2£¬ÇÒk1¡Ù0£©£®
£¨¢ñ£©ÈôµãMΪÏÒABµÄÖе㣬Çók1k2µÄÖµ£»
£¨¢ò£©°ÑÌâÉèÖеÄÍÖÔ²Ò»°ã»¯Îª
x2
a2
+
y2
b2
=1£¨a£¾0£¬b£¾0£¬a¡Ùb£©£¬ÆäËûÌõ¼þ²»±ä
£¨i£©¸ù¾Ý£¨¢ñ£©µÄÔËËã½á¹û£¬Ð´³öÒ»¸ö¹ØÓÚk1k2µÄÒ»°ãÐÔ½áÂÛ£¬²¢ÅжÏÓëÖ¤Ã÷ËüµÄÄæÃüÌâÊÇ·ñÎªÕæÃüÌ⣻
£¨ii£©¸ù¾ÝÒÔÉÏ̽¾¿£¬ÔÚË«ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©ÖÐд³öÀàËÆ½áÂÛ£®
¿¼µã£ºÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÎÊÌâ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÀûÓõã²î·¨ÄÜÖ¤Ã÷k1k2=-
1
2
£®
£¨2£©£¨i£©ÓÉÒÑÖªÌõ¼þÍÆµ¼³ök1k2=-
b2
a2
£¬Ð´³öÄæÃüÌ⣬ÓÉбÂÊΪk1µÄÖ±Ïßl1ÓëÍÖÔ²
x2
a2
+
y2
b2
=1
ÁªÁ¢·½³Ì×飬ÓÉ´ËÀûÓÃΤ´ï¶¨Àí½áºÏÖеã×ø±ê¹«Ê½ÄÜÖ¤Ã÷µãMΪÏÒABµÄÖе㣮
£¨ii£©ÓÉÒÔ½áÂÛ£¬ºÏÀíµØ¹éÄÉ×ܽᣬѰÕÒ¹æÂÉ£¬ÔÚË«ÇúÏß
x2
a2
-
y2
b2
=1£¨a£¾0£¬b£¾0£©ÖÐÄÜд³öÀàËÆ½áÂÛ£®
½â´ð£º ½â£º£¨1£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÒòΪµãMΪÏÒABµÄÖе㣬ÔòM£¨
x1+x2
2
£¬
y1+y2
2
£©£¬
ÇÒÓÐ
x12
2
+y12=1
£¬
x22
2
+y22=1
£¬
Á½Ê½Ïà¼õµÃ£º
(y1-y2)(y1+y2)
(x1-x2)(x1+x2)
=-
1
2
£¬¼´k1k2=-
1
2
£®
£¨2£©£¨i£©Ð±ÂÊΪk1µÄÖ±Ïßl1ÓëÍÖÔ²
x2
a2
+
y2
b2
=1
½»ÓÚ²»Í¬µÄA¡¢BÁ½µã£¬
Ö±Ïßy=k2xÓëÖ±Ïßl1µÄ½»µãΪM£¬£¨k1¡Ùk2£¬ÇÒk1¡Ù0£©£¬
ÈôµãMΪÏÒABµÄÖе㣬Ôòk1k2=-
b2
a2
£¬
ÄæÃüÌ⣺бÂÊΪk1µÄÖ±Ïßl1ÓëÍÖÔ²
x2
a2
+
y2
b2
=1
½»ÓÚ²»Í¬µÄA¡¢BÁ½µã£¬
Ö±Ïßy=k2xÓëÖ±Ïßl1µÄ½»µãΪM£¬£¨k1¡Ùk2£¬ÇÒk1¡Ù0£©£¬
Èôk1k2=-
b2
a2
£¬ÔòµãMΪÏÒABµÄÖе㣮
Ö¤Ã÷ÈçÏ£ºÉèÖ±ÏßABµÄ·½³ÌΪy=kx+m£¬A£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
ÁªÁ¢·½³Ì
y=kx+m
x2
a2
+
y2
b2
=1
£¬µÃ£¨b2+a2k12£©x2+2a2k1mx+a2m2-a2b2=0£¬
¡÷=4a4k12m2-4(b2+a2k12)(a2m2-a2b2)£¾0£¬
x1+x2=
-2a2k1m
b2+a2k12
£¬
y1+y2=k1(x1+x2)+2m=
2mb2
b2+a2k12
£¬
¡àÏÒABµÄÖеã×ø±êΪ£¨
-a2k1m
b2+a2k12
£¬
mb2
b2+a2k12
£©£¬
½«x=
-a2k1m
b2+a2k12
´úÈëÖ±Ïßl2£ºy=k2x£¬
µÃy=
-a2k1k2m
b2+a2k12
£¬ÓÖk1k2=-
b2
a2
£¬
¡ày=
mb2
b2+a2k12
£¬
¼´µãMΪÏÒABµÄÖе㣮
£¨ii£©Ð±ÂÊΪk1µÄÖ±Ïßl1ÓëË«ÇúÏß
x2
a2
-
y2
b2
=1
½»ÓÚ²»Í¬µÄA¡¢BÁ½µã£¬
Ö±Ïßy=k2xÓëÖ±Ïßl1µÄ½»µãΪM£¬£¨k1¡Ùk2£¬ÇÒk1¡Ù0£©£¬
µãMΪÏÒABµÄÖеãµÄ³äÒªÌõ¼þΪk1k2=
b2
a2
£®
µãÆÀ£º±¾Ì⿼²éÁ½Ö±ÏßµÄбÂʵij˻ýµÄÇ󷨣¬¿¼²éÍÖÔ²ºÍË«ÇúÏßÖÐÀàËÆ½áÂÛµÄ×ܽáÓëÖ¤Ã÷£¬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµã²î·¨µÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

º¯Êýf(x)=
1
x
-x
µÄͼÏó¹ØÓÚ£¨¡¡¡¡£©
A¡¢xÖá¶Ô³Æ
B¡¢yÖá¶Ô³Æ
C¡¢Ö±Ïßy=x¶Ô³Æ
D¡¢×ø±êÔ­µã¶Ô³Æ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Ò»¸ö°ë¾¶´óÓÚ2µÄÉÈÐΣ¬ÆäÖܳ¤C=10£¬Ãæ»ýS=6£¬ÇóÕâ¸öÉÈÐεİ뾶rºÍÔ²ÐĽǦÁµÄ»¡¶ÈÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª|
a
|=1£¬|
b
|=2£®
£¨¢ñ£©Èô
a
¡Î
b
£¬Çó
a
b
£»
£¨¢ò£©Èô
a
-
b
Óë
c
´¹Ö±£¬Çóµ±kΪºÎֵʱ£¬£¨k
a
-
b
£©¡Í£¨
a
+2
b
£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªµÈ²îÊýÁÐ{an}²»Êdz£ÊýÁУ¬a1+a2=4£¬a2¡¢a5¡¢a14³ÉµÈ±ÈÊýÁУ®
£¨¢ñ£©ÇóÊýÁÐ{an}µÄͨÏʽ£®
£¨¢ò£©Éèbn=
1
anan+1
£¬SnÊÇÊýÁÐ{bn}µÄǰnÏÇóSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éèf£¨x£©=x3-x2-x+a£¬a¡ÊR£¬Çóº¯Êýy=f£¨x£©µÄµ¥µ÷Çø¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Çóº¯Êýy=2cos2x-
1
2
µÄͼÏóÓëxÖá¼°Ö±Ïßx=0¡¢x=¦ÐËùΧ³ÉµÄͼÐεÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈôÕýÊýÏîÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇÒÂú×ã
Sn+1
=
Sn
+1£¬ÆäÖÐÊ×Ïîa1=1£®
£¨1£©Çóa2£¬a3¼°ÊýÁÐ{an}µÄͨÏʽan£»
£¨2£©Éèbn=
1
anan+1
£¬Tn±íʾÊýÁÐ{bn}µÄǰÏîºÍ£¬Èô¶ÔÈÎÒâµÄn¡ÊN*£¬²»µÈʽ¦ËTn£¼n+8¡Á£¨-1£©nºã³ÉÁ¢£¬ÇóʵÊý¦ËµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÍÖÔ²PµÄÖÐÐÄOÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬ÇÒ¾­¹ýµãA£¨0£¬2
3
£©£¬ÀëÐÄÂÊΪ
1
2
£®
£¨¢ñ£©ÇóÍÖÔ²PµÄ·½³Ì£»
£¨¢ò£©ÊÇ·ñ´æÔÚ¹ýµãE£¨0£¬-4£©µÄÖ±Ïßl½»ÍÖÔ²PÓÚµãR¡¢T£¬ÇÒÂú×ã
OR
OT
=8£¬Èô´æÔÚ£¬ÇóÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸