精英家教网 > 高中数学 > 题目详情
18.在一段时间内,某种商品的价格x(元)和销售量y(件)之间的一组数据如表:如果y与x呈线性相关且解得回归直线的斜率为$\hat b$=0.9,则$\hat a$的值为(  )
价格x(元)4681012
销售量y(件)358910
A.0.2B.-0.7C.-0.2D.0.7

分析 由已知表格中的数据,我们根据平均数公式计算出变量x,y的平均数,根据回归直线一定经过样本数据中心点,可求出$\hat a$值.

解答 解:由$\overline{x}$=$\frac{4+6+8+10+12}{5}$=8,
$\overline{y}$=$\frac{3+5+8+9+10}{5}$=7,
∵回归直线一定经过样本数据中心点,
由a=$\overline{y}$-$\hat b$$\overline{x}$=-0.2,
故选:C.

点评 本题考查的知识点是线性回归方程,其中根据回归直线一定经过样本数据中心点,是解答的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=$\sqrt{|x+1|+|x-1|-m}$的定义域为R.
(1)求实数m的取值范围;
(2)若m的最大值为n,当正数a,b满足$\frac{2}{3a+b}$+$\frac{1}{a+2b}$=n时,求7a+4b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列函数中,在其定义域内既是奇函数又是减函数的是(  )
A.y=x3,x∈RB.y=sinx,x∈RC.y=-x,x∈RD.y=($\frac{1}{2}$)x,x∈R

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某工厂生产甲、乙两种产品.已知生产甲种产品每吨需耗矿石2t、煤2t;生产乙种产品每吨需耗矿石4t、煤2t.如果甲种产品每吨能获利600元,乙种产品每吨能获利800元.工厂在生产这两种产品的计划中要求每天消耗矿石不超过8t、煤不超过6t.每天甲、乙两种产品应各生产多少能获利最大?最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点P(2,4)作圆C:(x-1)2+(y-2)2=5的切线,则切线方程为(  )
A.$\sqrt{3}$x-y=0B.2x-y=0C.x+2y-10=0D.x-2y-8=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=(x2+a)•ex在(0,f(0))处的切线与直线y=-8x平行.
(Ⅰ)求a的值.
(Ⅱ)求f(x)的单调区间和极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.为了研究高中学生对某项体育活动的态度(喜欢和不喜欢两种态度)与性别的关系,运用2×2列联表进行独立性检验,经计算得K2≈6.84,则有(  )以上的把握认为“喜欢体育活动与性别有关系”.
P(K2≥k00.1000.0500.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828
A.0.1%B.1%C.99%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在△ABC中,AB=BC=3,AC=4,若$\overrightarrow{AC}$+2$\overrightarrow{DC}$=3$\overrightarrow{BC}$,则向量$\overrightarrow{CD}$在$\overrightarrow{CA}$方向上的投影为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}中,a1=1,且an+1=2an+1,则a4=(  )
A.7B.9C.15D.17

查看答案和解析>>

同步练习册答案