精英家教网 > 高中数学 > 题目详情

【题目】如图,三棱柱中,侧棱底面 是棱的中点.

(Ⅰ)证明:平面平面

(Ⅱ)求平面将此三棱柱分成的两部分的体积之比.

【答案】(1)平面平面;(2)

【解析】试题分析:(Ⅰ)通过线面垂直可得,运用勾股定理可得,由线面垂直判定定理可得平面,由面面垂直判定定理得结论;(Ⅱ)平面将三棱柱分成上、下两部分,其上面部分几何体为四棱锥,下面部分几何体为四棱锥,分别计算出其体积即可.

试题解析:(Ⅰ)在三棱柱中,有

又因为

所以平面

因为平面

所以

是棱的中点.

所以

所以

所以平面.

又因为平面

所以平面平面.

(Ⅱ)平面将三棱柱分成上、下两部分,其上面部分几何体为四棱锥,下面部分几何体为四棱锥.

在平面中,过点,垂足为,则平面

所以是四棱锥的高,

中,因为,所以.

为直角梯形,其面积

所以四棱锥的体积 .

因三棱柱的体积

所以下部分几何体的体积

所以两部分几何体的体积之比为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线l:x+y﹣4=0,定点P(2,0),E,F分别是直线l和y轴上的动点,则△PEF的周长的最小值为(  )
A.2
B.6
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】今年入秋以来,某市多有雾霾天气,空气污染较为严重.市环保研究所对近期每天的空气污染情况进行调査研究后发现,每一天中空气污染指数与f(x)时刻x(时)的函数关系为f(x)=|log25(x+1)﹣a|+2a+1,x∈[0,24],其中a为空气治理调节参数,且a∈(0,1).
(1)若a= ,求一天中哪个时刻该市的空气污染指数最低;
(2)规定每天中f(x)的最大值作为当天的空气污染指数,要使该市每天的空气污染指数不超过3,则调节参数a应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={y|2<y<3},B={x|( <22x+1}.
(1)求A∩B;
(2)求C={x|x∈B且xA}.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小区提倡低碳生活,环保出行,在小区提供自行车出租.该小区有40辆自行车供小区住户租赁使用,管理这些自行车的费用是每日92元,根据经验,若每辆自行车的日租金不超过5元,则自行车可以全部出租,若超过5元,则每超过1元,租不出的自行车就增加2辆,为了便于结算,每辆自行车的日租金x元只取整数,用f(x)元表示出租自行车的日纯收入(日纯收入=一日出租自行车的总收入﹣管理费用)
(1)求函数f(x)的解析式及其定义域;
(2)当租金定为多少时,才能使一天的纯收入最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若二面角α﹣L﹣β的大小为 ,此二面角的张口内有一点P到α、β的距离分别为1和2,则P点到棱l的距离是(
A.
B.2
C.2
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= 的定义域是(
A.(0,2)
B.[0,2]
C.(0,1)∪(1,2)
D.[0,1)∪(1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C: 的离心率e= ,左顶点M到直线 =1的距离d= ,O为坐标原点.
(1)求椭圆C的方程;
(2)设直线l与椭圆C相交于A,B两点,若以AB为直径的圆经过坐标原点,证明:点O到直线AB的距离为定值;
(3)在(2)的条件下,试求△AOB的面积S的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义运算为:a*b= ,如1*2=1,则函数f(x)=|2x*2x﹣1|的值域为(
A.[0,1]
B.[0,1)
C.[0,+∞)
D.[1,+∞)

查看答案和解析>>

同步练习册答案