精英家教网 > 高中数学 > 题目详情
椭圆的中心在原点,焦点F在轴上,离心率为,点到F点的距离为,(1)求椭圆的方程;
(2)直线与椭圆交于不同的两点M、N两点,若,求实数的取值范围。
(1)(2)(,1)
解一:(1)

椭圆方程为         ————4分
(2)由 得
由于直线与椭圆有两个交点,      ①   
解二:(1)   当,设P为弦MN的中点,
  从而
   又,则
   即                 ② 
把②代入①得 ,解得  ;
由②得  ,解得.故所求的取范围是(,2).  
(2)当时,,解得
  故所求的取范围是(,1).      
∴当时,的取值范围是(,2),当时,的取值范围是(,1). 
————10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设直线与椭圆相交于AB两个不同的点,与x轴相交于点C,记O为坐标原点.
(1)证明:
(2)若的面积取得最大值时的椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题



(本题满分15分)已知m>1,直线
椭圆分别为椭圆的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆交于两点,
的重心分别为.若原点在以线段
为直径的圆内,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆C,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.
(I)是否存在,使对任意,总有成立?若存在,求出所有的值;
(II)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
F是椭圆C的左焦点,直线l为其左准线,直线lx轴交于点P,线段MN为椭圆的长轴,已知
(1)   求椭圆C的标准方程;
(2)   若过点P的直线与椭圆相交于不同两点A、B求证:∠AFM =∠BFN
(3)   求三角形ABF面积的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分、第3小题满分6分.
已知的顶点在椭圆上,在直线上,

(1)求边中点的轨迹方程;
(2)当边通过坐标原点时,求的面积;
(3)当,且斜边的长最大时,求所在直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分14分)已知椭圆的离心率为,右焦点也是抛物线的焦点。     
(1)求椭圆方程;
(2)若直线相交于两点。
①若,求直线的方程;
②若动点满足,问动点的轨迹能否与椭圆存在公共点?若存在,求出点的坐标;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,在等腰梯形ABCD中,AB//CD,且AB=2AD,设,以A,B为焦点且过点D的双曲线的离心率为,以C,D为焦点且过点A的椭圆的离心率为,则                              (   )
                 
A.随着角度的增大,增大,为定值
B.随着角度的增大,减小,为定值
C.随着角度的增大,增大,也增大
C.随着角度的增大,减小,也减小

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点F的直线交椭圆于点A、B,交其左准线于点C,若,则此直线的斜率为( )

A、         B、     C、    D、 

查看答案和解析>>

同步练习册答案