精英家教网 > 高中数学 > 题目详情
如图,已知椭圆C,经过椭圆的右焦点F且斜率为的直线l交椭圆C于A、B两点,M为线段AB的中点,设O为椭圆的中心,射线OM交椭圆于N点.
(I)是否存在,使对任意,总有成立?若存在,求出所有的值;
(II)若,求实数的取值范围.
故存在,使,
解:(1)椭圆C
直线ABykxm),
,(10k2+6)x2-20k2mx+10k2m2-15m2=0.
Ax1, y1)、Bx2,y2),则x1x2x1x2
xm
若存在,使ON的中点,∴

即N点坐标为
由N点在椭圆上,则
即5k4-2k2-3=0.∴(舍).
故存在,使
(2)x1x2k2x1-m)(x2m
=(1+k2x1x2k2m(x1x2)+k2m2
=(1+k2)·

k2-15≤-20k2-12,k≠0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的两个焦点为在椭圆上,且
.
(1)求椭圆方程;
(2)若直线过圆的圆心,交椭圆两点,且关于点对称,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知椭圆C的中心在原点、焦点在轴上,椭圆C上的点到焦点的最大值为3,最小值为1.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)若直线椭圆交于不同的两点M,N(M,N不是左、右顶点),且以MN为直径的圆经过椭圆的右顶点A.求证:直线过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆P的中心O在坐标原点,焦点在轴上,且经过点A(0,),离心率为
(1)求椭圆P的方程;
(2)是否存在过点E(0,-4)的直线交椭圆P于两不同点,且满足,若存在,求直线的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆的中心在原点,焦点F在轴上,离心率为,点到F点的距离为,(1)求椭圆的方程;
(2)直线与椭圆交于不同的两点M、N两点,若,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于曲线C:给出下面四个命题:
①曲线C不可能表示椭圆;
②当时,曲线C表示椭圆;
③若曲线C表示双曲线,则
④若曲线C表示焦点在轴上的椭圆,则
其中所有正确命题的序号为______________

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)

已知椭圆,与直线相交于两点,且为坐标原点.
(Ⅰ)求的值;
(Ⅱ)若椭圆长轴长的取值范围是,求椭圆离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知以椭圆的右焦点F为圆心,a为半径的圆与椭圆的右准线交于不同的两点,则该椭圆的离心率的取值范围是                                                              (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,焦点在y轴上的椭圆的标准方程是           

查看答案和解析>>

同步练习册答案