【题目】已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点.
(1)求圆A的方程;
(2)当|MN|=2时,求直线l的方程.
【答案】(1)圆A的方程为(x+1)2+(y-2)2=20.(2)直线l的方程为x=-2或3x-4y+6=0.
【解析】试题分析:(1)利用圆心到切线的距离等于半径求得 ;(2)先检验当直线斜率不存在时 符合题意;当直线斜率存在是,设其方程为: ,再利用点到直线的距离公式和弦长公式,即可求得 ,从而求得另一条直线.
试题解析:(1)设圆A的半径为R.
由于圆A与直线l1:x+2y+7=0相切,
∴R==2.
∴圆A的方程为(x+1)2+(y-2)2=20.
(2)①当直线l与x轴垂直时,易知x=-2符合题意;
②当直线l的斜率存在时,设直线l的方程为y=k(x+2).
即kx-y+2k=0.
连接AQ,则AQ⊥MN.
∵|MN|=2,∴|AQ|==1,
则由|AQ|==1,
得k=,∴直线l:3x-4y+6=0.
故直线l的方程为x=-2或3x-4y+6=0.
科目:高中数学 来源: 题型:
【题目】定义在上的函数,如果满足:对任意,存在常数,都有成立,则称是上的有界函数,其中称函数的一个上界.已知函数, .
(1)若函数为奇函数,求实数的值;
(2)在第(1)的条件下,求函数在区间上的所有上界构成的集合;
(3)若函数在上是以3为上界的有界函数,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益与投入(单位:万元)满足,乙城市收益与投入(单位:万元)满足,设甲城市的投入为(单位:万元),两个城市的总收益为(单位:万元).
(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.
(Ⅰ)求证:A1C⊥平面ABC1;
(Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知非空集合A、B满足以下四个条件:
①A∪B={1,2,3,4,5,6,7};②A∩B=;③A中的元素个数不是A中的元素;④B中的元素个数不是B中的元素.
若集合A含有2个元素,则满足条件的A有个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com