精英家教网 > 高中数学 > 题目详情
9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-ay=0,曲线C的一个焦点与抛物线y2=-8x的焦点重合,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\sqrt{10}$

分析 根据题意,由双曲线的方程可得其渐近线方程,结合题意可得$\frac{1}{a}$=$\frac{b}{a}$,解可得b值,再由抛物线的方程可得其焦点坐标,结合题意可得c的值,计算可得a的值,由双曲线离心率公式计算可得答案.

解答 解:根据题意,双曲线C的方程为:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1,则其渐近线方程为y=±$\frac{b}{a}$x,
又由一条渐近线方程为x-ay=0,即y=$\frac{1}{a}$x,
则有$\frac{1}{a}$=$\frac{b}{a}$,解可得b=1,
抛物线的方程为y2=-8x,其焦点坐标为(-2,0),
则双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的焦点坐标为(-2,0),
则有c2=a2+b2=4,即c=2,
又由b=1,则a=$\sqrt{4-1}$=$\sqrt{3}$,
则双曲线的离心率e=$\frac{c}{a}$=$\frac{2}{\sqrt{3}}$=$\frac{2\sqrt{3}}{3}$;
故选:A.

点评 本题考查双曲线、抛物线的几何性质,关键是掌握双曲线、抛物线的几何性质,并利用其性质求出a、c的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数$f(x)=\sqrt{lnx+x+m}$,若曲线$y=\frac{1-e}{2}cosx+\frac{1+e}{2}$上存在(x0,y0),使得f(f(y0))=y0成立,则实数m的取值范围为(  )
A.[0,e2-e+1]B.[0,e2+e-1]C.[0,e2+e+1]D.[0,e2-e-1]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,过左焦点F且垂直于x轴的直线与椭圆C相交,所得弦长为1,斜率为k(k≠0)的直线l过点(1,0),且与椭圆C相交于不同的两点A,B.
(Ⅰ)求椭圆C的方程;
(Ⅱ)在x轴上是否存在点M,使得无论k取何值,$\overrightarrow{MA}•\overrightarrow{MB}-\frac{k^2}{{1+4{k^2}}}$为定值?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知f(x)=(x-4)3+x-1,{an}是公差不为0的等差数列,f(a1)+f(a2)+…+f(a9)=27,则f(a5)的值为(  )
A.0B.1C.3D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”.利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”.如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出n的值为(参考数据:sin15°=0.2588,sin7.5°=0.1305)(  )
A.16B.20C.24D.48

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如图,已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)上有一个点A,它关于原点的对称点为B,点F为椭圆的右焦点,且满足AF⊥BF,当∠ABF=$\frac{π}{12}$时,椭圆的离心率为$\frac{\sqrt{6}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知点P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4),P5(x5,y5),P6(x6,y6)是抛物线C:y2=2px(p>0)上的点,F是抛物线C的焦点,若|P1F|+|P2F|+|P3F|+|P4F|+|P5F|+|P6F|=36,且x1+x2+x3+x4+x5+x6=24,则抛物线C的方程为(  )
A.y2=4xB.y2=8xC.y2=12xD.y2=16x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在△ABC中,角A,B,C所对应的边分别为a,b,c,且(2a-c)cosB=bcosC.
(Ⅰ)求角B的大小;
(Ⅱ)若a=2,c=3,求sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{x}^{2}}{b}$-y2=1(b>0)有相同的焦点F1,F2,若P为两曲线的一个交点,则△PF1F2的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案