精英家教网 > 高中数学 > 题目详情
19.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{x}^{2}}{b}$-y2=1(b>0)有相同的焦点F1,F2,若P为两曲线的一个交点,则△PF1F2的面积为(  )
A.1B.2C.3D.4

分析 根据题意,设P的坐标为(m,n),则有$\left\{\begin{array}{l}{\frac{{m}^{2}}{a}+{n}^{2}=1}\\{\frac{{m}^{2}}{b}-{n}^{2}=1}\end{array}\right.$,解可得m、n的值,可以表示△PF1F2的面积S,又由椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{x}^{2}}{b}$-y2=1(b>0)有相同的焦点,分析可得a-1=b+1,即b=a-2,代入S中,计算可得答案.

解答 解:根据题意,设两曲线的一个交点P的坐标为(m,n),
则有$\left\{\begin{array}{l}{\frac{{m}^{2}}{a}+{n}^{2}=1}\\{\frac{{m}^{2}}{b}-{n}^{2}=1}\end{array}\right.$,解可得$\left\{\begin{array}{l}{m=±\sqrt{\frac{2ab}{a+b}}}\\{n=±\sqrt{\frac{a-b}{a+b}}}\end{array}\right.$,
椭圆圆$\frac{{x}^{2}}{a}$+y2=1中,|F1F2|=2c=2$\sqrt{a-1}$,
△PF1F2的面积S=$\frac{1}{2}$×|n|×2$\sqrt{a-1}$=$\sqrt{\frac{a-b}{a+b}}$×$\sqrt{a-1}$,
又由椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{x}^{2}}{b}$-y2=1(b>0)有相同的焦点,
则有a-1=b+1,即b=a-2,
则S=$\sqrt{\frac{2}{2a-2}}$×$\sqrt{a-1}$=1;
故选:A.

点评 本题考查椭圆、双曲线的几何性质,注意两曲线的焦点相同,构造a、b的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线方程为x-ay=0,曲线C的一个焦点与抛物线y2=-8x的焦点重合,则双曲线的离心率为(  )
A.$\frac{2\sqrt{3}}{3}$B.$\sqrt{2}$C.2D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1+lnx}{x-1}$.
(I)求函数f(x)的单调区间;
(II)若不等式f(x)>$\frac{k}{x}({x>1})$恒成立,求整数k的最大值;
(III)求证:(1+1×2)•(1+2×3)…(1+n(n×1))>e2n-3(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.执行如图所示的程序框图,如图输出S的值为-1,那么判断框内应填入的条件是(  )
A.k≤8B.k≤9C.k≤10D.k≤11

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.正方体ABCD-A1B1C1D1的棱长为2,点P是线段BD1的中点,M是线段B1C1上的动点,则三棱锥M-PBC的体积为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一儿童游乐场拟建造一个“蛋筒”型游乐设施,其轴截面如图中实线所示.ABCD是等腰梯形,AB=20米,∠CBF=α(F在AB的延长线上,α为锐角).圆E与AD,BC都相切,且其半径长为100-80sinα米.EO是垂直于AB的一个立柱,则当sinα的值设计为多少时,立柱EO最矮?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知F1、F2分别是椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点,离心率为$\frac{\sqrt{3}}{3}$,点P在椭圆C上,且点P在x轴上的正投影恰为F1,在y轴上的正投影为点(0,$\frac{2\sqrt{3}}{3}$).
(1)求椭圆C的方程;
(2)过点F1且倾斜角为$\frac{5π}{6}$的直线l与椭圆C交于A,B两点,过点P且平行于直线l的直线交椭圆C于另一点Q,求证:四边形PABQ为平行四边形.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知f(x)=$\left\{\begin{array}{l}{-2{x}^{2}+3x,-2≤x<0}\\{ln\frac{1}{x+1},0≤x≤2}\end{array}\right.$,若g(x)=|f(x)|-ax-a的图象与x轴有3个不同的交点,则实数a的取值范围为(  )
A.[$\frac{ln3}{3}$,$\frac{1}{e}$)B.[$\frac{ln3}{3}$,$\frac{1}{2e}$]C.(0,$\frac{1}{e}$)D.(0,$\frac{1}{2e}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线l:y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若CD的垂直平分线过点(-1,0),求直线l的方程.

查看答案和解析>>

同步练习册答案