精英家教网 > 高中数学 > 题目详情
9.如图,椭圆E的左右顶点分别为A、B,左右焦点分别为F1、F2,|AB|=4,|F1F2|=2$\sqrt{3}$,直线l:y=kx+m(k>0)交椭圆于C、D两点,与线段F1F2及椭圆短轴分别交于M、N两点(M、N不重合),且|CM|=|DN|.
(Ⅰ)求椭圆E的离心率;
(Ⅱ)若CD的垂直平分线过点(-1,0),求直线l的方程.

分析 (Ⅰ)由$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,求出$a=2,c=\sqrt{3}$,求出b,得到椭圆方程,然后求解离心率.
(Ⅱ)设C(x1,y1),D(x2,y2)易知$N({0,m}),M({-\frac{m}{k},0})$,由$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+4{y^2}=4}\end{array}}\right.$消去y整理,通由△>0韦达定理,设CD的中点为H(x0,y0),求出直线l的垂直平分线方程为$y-\frac{m}{2}=-2({x+m})$,通过过点(-1,0),求解直线l的方程.

解答 解:(Ⅰ)由$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,可知$a=2,c=\sqrt{3}$,可得b=1,
则椭圆方程为$\frac{x^2}{4}+{y^2}=1$….(2分)
离心率是$e=\frac{{\sqrt{3}}}{2}$….(4分)
(Ⅱ)设C(x1,y1),D(x2,y2)易知$N({0,m}),M({-\frac{m}{k},0})$…(5分)
由$\left\{{\begin{array}{l}{y=kx+m}\\{{x^2}+4{y^2}=4}\end{array}}\right.$(k>0)消去y整理得:(1+4k2)x2+8kmx+4m2-4=0
由△>0⇒4k2+m2+1>0,${x_1}+{x_2}=\frac{-8km}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4{m^2}-4}}{{1+4{k^2}}}$…(6分)
且|CM|=|DN|即$\overrightarrow{CM}=\overrightarrow{ND}$可知${x_1}+{x_2}=-\frac{m}{k}$,即$\frac{-8km}{{1+4{k^2}}}=-\frac{m}{k}$,解得$k=\frac{1}{2}$….(8分)${x_1}+{x_2}=-2m,{y_1}+{y_2}=2{m^2}-2$,设CD的中点为H(x0,y0),
则${x_0}=\frac{{{x_1}+{x_2}}}{2}=-m,{y_0}=\frac{{{y_1}+{y_2}}}{2}=\frac{m}{2}$….(10分)
直线l的垂直平分线方程为$y-\frac{m}{2}=-2({x+m})$过点(-1,0),解得$m=\frac{4}{3}$
此时直线l的方程为$y=\frac{1}{2}x+\frac{4}{3}$….(12分)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查计算能力以及转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.椭圆$\frac{{x}^{2}}{a}$+y2=1(a>1)与双曲线$\frac{{x}^{2}}{b}$-y2=1(b>0)有相同的焦点F1,F2,若P为两曲线的一个交点,则△PF1F2的面积为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x||x|≤2},B={x|x2-x-2<0},则A∩∁RB=(  )
A.RB.{x|-2≤x≤-1}C.{x|-2≤x≤-1或x>2}D.{x|-2≤x≤-1或x=2}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}是公比为2的等比数列,且a2,a3+1,a4成等差数列.
( I)求数列{an}的通项公式;
( II)记bn=an+log2an+1,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\frac{1}{2}{x^2}$-mx+lnx有极值,则函数f(x)的极值之和的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知i为虚数单位,复数z满足z(1-i)=3+2i,则z=(  )
A.$\frac{1}{2}$+$\frac{5i}{2}$B.-$\frac{1}{2}$-$\frac{5i}{2}$C.$\frac{5}{2}$+$\frac{5i}{2}$D.-$\frac{5}{2}$-$\frac{5i}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,三角形PCD所在的平面与等腰梯形ABCD所在的平面垂直,AB=AD=$\frac{1}{2}$CD,AB∥CD,CP⊥CD,M为PD的中点.
(1)求证:AM∥平面PBC;
(2)求证:平面BDP⊥平面PBC.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.某学校在一次第二课堂活动中,特意设置了过关智力游戏,游戏共五关.规定第一关没过者没奖励,过n(n∈N*)关者奖励2n-1件小奖品(奖品都一样).如图是小明在10次过关游戏中过关数的条形图,以此频率估计概率.
(Ⅰ)求小明在这十次游戏中所得奖品数的均值;
(Ⅱ)规定过三关者才能玩另一个高级别的游戏,估计小明一次游戏后能玩另一个游戏的概率;
(Ⅲ)已知小明在某四次游戏中所过关数为{2,2,3,4},小聪在某四次游戏中所过关数为{3,3,4,5},现从中各选一次游戏,求小明和小聪所得奖品总数超过10的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设x,y∈R,向量$\overrightarrow a=({x,2})$,$\overrightarrow b=({1,y})$,$\overrightarrow c=({2,-6})$,且$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b∥\overrightarrow c$,则$|{\overrightarrow a+\overrightarrow b}|$=$5\sqrt{2}$.

查看答案和解析>>

同步练习册答案