分析 先求导,方程x2-mx+1=0在(0,+∞)上有根求出m的范围,根据韦达定理即可化简f(x1)+f(x2),根据m的范围即可求出.
解答 解:∵f(x)的定义域是(0,+∞),
f′(x)=x-m+$\frac{1}{x}$=$\frac{{x}^{2}-mx+1}{x}$,
∵f(x)存在极值,
∴f′(x)=0在(0,+∞)上有根,
即方程x2-mx+1=0在(0,+∞)上有根.
设方程x2-mx+1=0的两根为x1,x2,
∴△=m2-4>0,x1+x2=m>0,x1x2=1
即m>2
∴f(x1)+f(x2)=$\frac{1}{2}$(x12+x22)-m(x1+x2)+(lnx1+lnx2),
=$\frac{1}{2}$(x1+x2)2-x1x2-m(x1+x2)+lnx1x2,
=$\frac{1}{2}$m2-1-m2,
=-$\frac{1}{2}$m2-1<-3,
故函数f(x)的极值之和的取值范围是(-∞,-3)
故答案为:(-∞,-3)
点评 本题考查了导数函数极值的关系,以及韦达定理及二次函数的性质,考查了分析问题解决问题的能力,属于中档题
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p是假命题 | B. | ¬p是真命题 | C. | p∨q是真命题 | D. | p∧q是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com