精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=(ax+2)lnx-(x2+ax-a-1)(a∈R)
( I)若函数f(x)的图象在x=e处的切线的斜率为$\frac{2}{e}$-2e,求f(x)的极值;
( II)当x>1时,f(x)的图象恒在x轴下方,求实数a的取值范围.

分析 (1)根据导数的几何意义即可求出a的值,再根据导数和函数极值的关系即可求出,
(Ⅱ)先求导,再构造g(x)=alnx-2x+$\frac{2}{x}$,利用导数求出函数的最值,根据函数的最值即可判断f(x)的图象是否恒在x轴下方

解答 解:(Ⅰ)∵f′(x)=$\frac{ax+2}{x}$+alnx-(2x+a)=alnx-2x+$\frac{2}{x}$,x>0,
∴f′(e)=a-2e+$\frac{2}{e}$=$\frac{2}{e}$-2e,
∴a=0,
∴f(x)=2lnx-x2+
∴f′(x)=$\frac{2}{x}$-2x=$\frac{2-2{x}^{2}}{x}$=-$\frac{2(x+1)(x-1)}{x}$,
令f′(x)>0,解得0<x<1,函数f(x)递增,
令f′(x)<0,解得x>1,函数f(x)递减,
∴f(x)极大值=f(1)=0,无极小值,
(2)由(1)可知f′(x)=alnx-2x+$\frac{2}{x}$,x>0,
令g(x)=alnx-2x+$\frac{2}{x}$,
∴g′(x)=$\frac{a}{x}$-2-$\frac{2}{{x}^{\;}}$=$\frac{1}{x}$(a-2x-$\frac{2}{x}$),
当x>1时,x+$\frac{1}{x}$>2,有a-2x-$\frac{2}{x}$<a-4,
①若a-4≤0,即a≤4时,g′(x)<0,故g(x)在区间(1,+∞)上单调递减,
则当x>1时,g(x)<g(1)=0,即f′(x)<0,故f(x)在区间(1,+∞)上单调递减,
故当x>1时,f(x)<f(1)=0,
故当a≤4,x>1时,f(x)的图象恒在x轴的下方,
②若a-4>0,即a>4时,令g′(x)>0,可得1<x<$\frac{a+\sqrt{{a}^{2}-16}}{4}$,
故g(x)在区间(0,$\frac{a+\sqrt{{a}^{2}-16}}{4}$)上单调递减,
故当1<x<$\frac{a+\sqrt{{a}^{2}-16}}{4}$时,g(x)>g(1)=0,
故f(x)在区间(1,$\frac{a+\sqrt{{a}^{2}-16}}{4}$)上单调递增,
故当1<x<$\frac{a+\sqrt{{a}^{2}-16}}{4}$时,f(x)>f(1)=0,
故当a>4,x>1时,函数f(x)的图象不可恒在x轴下方,
综上可知,a的取值范围是(-∞,4].

点评 本题考查利用导数求函数的最值以及极值和关系,以及导数的几何意义,考查了学生的运算能力和转化能力,属于难题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图所示,已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的焦距为2,直线y=x被椭圆C截得的弦长为$\frac{4\sqrt{3}}{3}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设点M(x0,y0)是椭圆C上的动点,过原点O引两条射线l1,l2与圆M:(x-x02+(y-y02=$\frac{2}{3}$分别相切,且l1,l2的斜率k1,k2存在.
①试问k1•k2是否定值?若是,求出该定值,若不是,说明理由;
②若射线l1,l2与椭圆C分别交于点A,B,求|OA|•|OB|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设f(x)=ex-e-x-x.
(1)求f(x)的单调区间;
(2)已知g(x)=x2f(x)+(x+1)[f(x)+(1-a)x]+(1-a)x3.若对所有x≥0,都有g(x)≥0成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知向量$\overrightarrow{a}$=(sin(π+ωx),2cosωx),$\overrightarrow{b}$=(2$\sqrt{3}$sin($\frac{π}{2}$+ωx),cosωx),(ω>0),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,其图象上相邻的两个最低点之间的距离为π.
(Ⅰ)求函数f(x)的对称中心;
(Ⅱ)在锐角△ABC中,角A、B、C的对边分别为a、b、c,tanB=$\frac{\sqrt{3}ac}{{a}^{2}+{c}^{2}-{b}^{2}}$,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=alnx-(a+b)x+x2(a,b∈R).
(I)若a=2,b=1,求函数f(x)在x=1处的切线方程;
(II) 若f(x)在x=1处取得极值,讨论函数f(x)的单调性;
(III)当a=1时,设函数φ(x)=f(x)-x2有两个零点,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=$\frac{1}{2}{x^2}$-mx+lnx有极值,则函数f(x)的极值之和的取值范围是(-∞,-3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合A={y|y=2x,-1<x<2},B={x|(x-1)(x+2)<0},则A∩B=(  )
A.(-2,3)B.(-2,1)C.$(\frac{1}{2},2)$D.$(\frac{1}{2},1)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图所示,四面体ABCD中,已知平面BCD⊥平面ABC,BD⊥DC,BC=6,AB=4$\sqrt{3}$,∠ABC=30°.
(I)求证:AC⊥BD;
(II)若二面角B-AC-D为45°,求直线AB与平面ACD所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.己知对所有实数x,不等式x2log2$\frac{2(a-1)}{a}$+2xlog2$\frac{2a}{a-1}$+log2$\frac{(a-1)^{2}}{4{a}^{2}}$<0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案