精英家教网 > 高中数学 > 题目详情
1.求和
(1)12-22+32-42+…+(2n-1)2-(2n)2
(2)-1+3-5+7-…+(-1)n(2n-1)

分析 (1)通过(2n-1)2-(2n)2=1-4n,进而利用分组法求和即可;
(2)分n为奇数、偶数两种情况讨论即可,进而利用分组法求和即得结论.

解答 解:(1)∵(2n-1)2-(2n)2=(2n-1-2n)(2n-1+2n)=1-4n,
∴12-22+32-42+…+(2n-1)2-(2n)2=n-4(1+2+…+n)
=n-4•$\frac{n(n+1)}{2}$
=-2n2-n;
(2)记-1+3-5+7-…+(-1)n(2n-1)=Sn
当n为偶数时,(-1)n-1(2n-3)+(-1)n(2n-1)=-(2n-3)+(2n-1)=2,
于是Sn=n;
当n为奇数时,(-1)n-1(2n-3)+(-1)n(2n-1)=-2,
于是Sn=-1-(n-1)=-n;
综上所述,Sn=$\left\{\begin{array}{l}{-n,}&{n为奇数}\\{n,}&{n为偶数}\end{array}\right.$.

点评 本题考查数列的求和,考查分类讨论的思想,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.设Ω为不等式组$\left\{\begin{array}{l}{x+y≥0}\\{x-y+4≥0}\\{x≤m}\end{array}\right.$(m>0)表示的平面区域.若Ω的面积为9,则m=(  )
A.8B.6C.4D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某农机租赁公司共有50台收割机,其中甲型20台,乙型30台,现将这50台联合收割机派往 A,B两地区收割水稻,其中30台派往 A地区,20台派往 B地区,两地区与该农机公司商定的每天租赁价格如表:
每台甲型收割机的租金每台乙型收割机的租金
A地区1800元1600元
B地区1600元1200元
(1)设派往 A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y元,求y关于x的函数关系式;
(2)若使农机租赁公司这50台收割机一天所获租金不低于79600元,试写出满足条件的所有分派方案;
(3)农机租赁公司拟出一个分派方案,使该公司50台收割机每天获得租金最高,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知角α的终边落在直线y=-2x上,则tanα=-2,$cos(2α+\frac{3}{2}π)$=$-\frac{4}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设单位向量$\overrightarrow{e_1}$与$\overrightarrow{e_2}$既不平行也不垂直,对非零向量$\overrightarrow a={x_1}\overrightarrow{e_1}+{y_1}\overrightarrow{e_2}$、$\overrightarrow b={x_2}\overrightarrow{e_1}+{y_2}\overrightarrow{e_2}$有结论:
①若x1y2-x2y1=0,则$\overrightarrow a∥\overrightarrow b$;
②若x1x2+y1y2=0,则$\overrightarrow a⊥\overrightarrow b$.
关于以上两个结论,正确的判断是(  )
A.①成立,②不成立B.①不成立,②成立C.①成立,②成立D.①不成立,②不成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知在空间直角坐标系中,点A的坐标为(0,2,1),点B的坐标为(-2,0,3),则线段AB的中点坐标为(  )
A.(-1,1,2)B.(-2,2,4)C.(-1,-1,1)D.(1,-1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设a=${∫}_{0}^{π}$$\sqrt{2}$cos(x-$\frac{π}{4}$)dx,则二项式(a$\sqrt{x}$-$\frac{1}{\sqrt{x}}$)4中展开式中含x项的系数是(  )
A.-32B.32C.-8D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别F1(-$\sqrt{2}$,0),F2($\sqrt{2}$,0),直线x+$\sqrt{2}$y=0与椭圆C的一个交点为(-$\sqrt{2}$,1),点A是椭圆C上的任意一点,延长AF1交椭圆C于点B,连接BF2,AF2
(1)求椭圆C的方程;
(2)求△ABF2的内切圆的最大周长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图所示的阴影部分可用二元一次不等式组表示为$\left\{\begin{array}{l}{x-y≥0}\\{x+y>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-y≤0}\\{x+y>0}\end{array}\right.$.

查看答案和解析>>

同步练习册答案