| A. | 1 | B. | 2 | C. | 4 | D. | 5 |
分析 由直线与直线互相垂直的性质得a2+1-a2b=0,从而|b|=|$\frac{{a}^{2}+1}{{a}^{2}}$|,进而|ab|=|a•$\frac{{a}^{2}+1}{{a}^{2}}$|=|a+$\frac{1}{a}$|,由此能求出|ab|的最小值.
解答 解:∵直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a,b∈R,
∴a2+1-a2b=0
∴|b|=|$\frac{{a}^{2}+1}{{a}^{2}}$|,
∴|ab|=|a•$\frac{{a}^{2}+1}{{a}^{2}}$|=|a+$\frac{1}{a}$|≥2
∴|ab|的最小值是2.
故选:B.
点评 本题考查两实数值乘积的最小值的求法,是基础题,解题时要认真审题,注意直线垂直、基本不等式的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com