精英家教网 > 高中数学 > 题目详情
6.若过点(1,1)的直线与圆x2+y2-6x-4y+4=0相交于A,B两点,则|AB|的最小值为4.

分析 求出圆x2+y2-6x-4y+4=0的圆心和半径r,再求出点(1,1)与圆心(3,2)间的距离d,|AB|的最小值|AB|min=2$\sqrt{{r}^{2}-{d}^{2}}$.

解答 解:圆x2+y2-6x-4y+4=0的圆心为(3,2),半径r=$\frac{1}{2}\sqrt{36+16-16}$=3,
点(1,1)与圆心(3,2)间的距离d=$\sqrt{(3-1)^{2}+(2-1)^{2}}$=$\sqrt{5}$,
∴|AB|的最小值|AB|min=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{9-5}$=4.
故答案为:4.

点评 本题考查圆的弦长的最小值的求法,考查两点间距离公式的应用,是中档题,解题时要认真审题,注意圆的方程、直线方程的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知圆C过原点,圆心在直线y=2x上,直线x+y-3=0与圆C交于A,B两点,且$\overrightarrow{OA}•\overrightarrow{OB}=0$,
(1)求圆C的方程;
(2)若M(0,5),P为圆上的动点,求直线MP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设f(x)=$f(x)=\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$.若f(x)=3.则x的值为(  )
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知sin($\frac{π}{3}$+a)=$\frac{5}{13}$,且a∈($\frac{π}{6}$,$\frac{2π}{3}$),则sin($\frac{π}{12}$+a)的值是(  )
A.$\frac{17\sqrt{2}}{26}$B.$\frac{-7\sqrt{2}}{26}$C.-$\frac{17\sqrt{2}}{26}$D.$\frac{7\sqrt{2}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知集合A={x|y=ln(x-a)},B={-2,2,3},A∩B=B,则实数a的取值范围是(  )
A.(-2,+∞)B.(3,+∞)C.(-∞,-2)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点A($\sqrt{5}$,$\sqrt{3}$),其右焦点F2的坐标为(4,0).
(I)求椭圆C的方程;
(II)已知点B1(-2,0),B2(2,0),过B1的直线l交椭圆C于P、Q两点,交圆O:x2+y2=8于M、N两点,设|MN|=t,若t∈[4,2$\sqrt{7}$],求△B2PQ的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在平面直角坐标系xOy中,设椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若$\frac{1}{2}$≤e≤$\frac{\sqrt{2}}{2}$,求$\frac{|C{F}_{2}|}{|{F}_{2}D|}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.假定1500件产品中有100件不合格,从中有放回地抽取15件进行检查,其中不合格件数为X则X的数学期望是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.直线x+a2y+1=0与直线(a2+1)x-by+3=0互相垂直,a,b∈R则|ab|的最小值为(  )
A.1B.2C.4D.5

查看答案和解析>>

同步练习册答案