分析 求出圆x2+y2-6x-4y+4=0的圆心和半径r,再求出点(1,1)与圆心(3,2)间的距离d,|AB|的最小值|AB|min=2$\sqrt{{r}^{2}-{d}^{2}}$.
解答 解:圆x2+y2-6x-4y+4=0的圆心为(3,2),半径r=$\frac{1}{2}\sqrt{36+16-16}$=3,
点(1,1)与圆心(3,2)间的距离d=$\sqrt{(3-1)^{2}+(2-1)^{2}}$=$\sqrt{5}$,
∴|AB|的最小值|AB|min=2$\sqrt{{r}^{2}-{d}^{2}}$=2$\sqrt{9-5}$=4.
故答案为:4.
点评 本题考查圆的弦长的最小值的求法,考查两点间距离公式的应用,是中档题,解题时要认真审题,注意圆的方程、直线方程的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | -$\sqrt{3}$ | D. | $\frac{3}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{17\sqrt{2}}{26}$ | B. | $\frac{-7\sqrt{2}}{26}$ | C. | -$\frac{17\sqrt{2}}{26}$ | D. | $\frac{7\sqrt{2}}{26}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,+∞) | B. | (3,+∞) | C. | (-∞,-2) | D. | (-∞,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com