精英家教网 > 高中数学 > 题目详情

【题目】小明计划在8月11日至8月20日期间游览某主题公园.根据旅游局统计数据,该主题公园在此期间“游览舒适度”(即在园人数与景区主管部门核定的最大瞬时容量之比,40%以下为舒适,40%—60%为一般,60%以上为拥挤)情况如图所示.小明随机选择8月11日至8月19日中的某一天到达该主题公园,并游览2天.

(Ⅰ)求小明连续两天都遇上拥挤的概率;

(Ⅱ)设是小明游览期间遇上舒适的天数,求的分布列和数学期望;

(Ⅲ)由图判断从哪天开始连续三天游览舒适度的方差最大?(结论不要求证明)

【答案】(1)(2)(3)从日开始连续三天游览舒适度的方差最大.

【解析】试题分析:(Ⅰ)设表示事件“小明8月11日起第日连续两天游览主题公园”( )且,通过观察上表可知两天都遇上拥挤为,故可得其概率;(Ⅱ)可知的所有可能取值为,计算出 ,求出分布列,运用数学期望求解即可;(Ⅲ)根据方差的意义,仔细观察表即可得结果.

试题解析:设表示事件“小明8月11日起第日连续两天游览主题公园”( ).

根据题意, ,且.

(Ⅰ)设为事件“小明连续两天都遇上拥挤”,

.

所以.

(Ⅱ)由题意,可知的所有可能取值为

所以的分布列为

的期望

(Ⅲ)从日开始连续三天游览舒适度的方差最大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,如果输入的x∈[﹣2,2],那么输出的y属于(

A.[5,9]
B.[3,9]
C.(1,9]
D.(3,5]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,其中 为自然对数的底数.

(Ⅰ)若在区间内具有相同的单调性,求实数的取值范围;

(Ⅱ)若,且函数的最小值为,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,设椭圆的中心为原点O,长轴在x轴上,上顶点为A,左、右焦点分别为F1F2,线段OF1OF2的中点分别为B1B2,△AB1B2是面积为4的直角三角形.

(1)求该椭圆的离心率和标准方程;

(2)B1作直线交椭圆于PQ两点,使PB2⊥QB2,△PB2Q的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个社会调查机构就某地居民的月收入调查了10 000人,并根据所得数据画了样本的频率分布直方图(如图).为了分析居民的收入与年龄、学历、职业等方面的关系,要从这10 000人中再用分层抽样方法抽出80人作进一步调查,则在[1 500,2 000)(元)月收入段应抽出( )人.

A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于维向量,若对任意均有,则称向量. 对于两个向量定义.

(1)若, 求的值;

(2)现有一个向量序列: 且满足: ,求证:该序列中不存在向量.

(3) 现有一个向量序列: 且满足: ,若存在正整数使得向量序列中的项,求出所有的.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义:在数列{an}中,若a ﹣a =p(n≥2,n∈N* , p为常数),则称数列{an}为等方差数列,下列判断:
①若{an}是“等方差数列”,则数列{an2}是等差数列;
②{(﹣1)n}是“等方差数列”;
③若{an}是“等方差数列”,则数列{akn}(k∈N* , k为常数)不可能还是“等方差数列”;
④若{an}既是“等方差数列”,又是等差数列,则该数列是常数列.
其中正确的结论是 . (写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体中,平面平面,四边形为菱形,且 中点.

(Ⅰ)求证: ∥平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)在棱上是否存在点,使 ? 若存在,求的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某造船公司年造船量是20已知造船x艘的产值函数为R(x)3 700x45x210x3(单位:万元)成本函数为C(x)460x5 000(单位:万元)

(1)求利润函数P(x)(提示:利润=产值-成本)

(2)问年造船量安排多少艘时可使公司造船的年利润最大?

查看答案和解析>>

同步练习册答案