精英家教网 > 高中数学 > 题目详情
若f(x)=1+2cosx-cos2x,求函数f(x)的最大值与最小值.
考点:二倍角的余弦,复合三角函数的单调性
专题:三角函数的图像与性质
分析:利用余弦函数的倍角公式进行化简即可.
解答: 解:f(x)=1+2cosx-cos2x=f(x)=1+2cosx-(2cos2x-1)=-2cos2x+2cosx+2=-2(cosx-
1
2
2+
5
2

∵-1≤cosx≤-1,
∴当cosx=
1
2
时,函数取得最大值
5
2

当cosx=-1时,函数取得最小值-2.
点评:本题主要考查三角函数最值的求解,利用余弦函数的倍角公式结合一元二次函数的性质是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=x2-mx(m>0)在区间[0,2]上的最小值记为g(m)
(Ⅰ)若0<m≤4,求函数g(m)的解析式;
(Ⅱ)定义在(-∞,0)∪(0,+∞)的函数h(x)为偶函数,且当x>0时,h(x)=g(x),若h(t)>h(4),求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

政府为了解决老百姓买药贵的问题,决定下调某药品的单价,并固定每年降价的百分率为30%,那么经过多少年,该药从每盒800元降至200元?(lg2=0.3010,lg7=0.8451)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知100名学生某月饮料消费支出情况的频率分布直方图如图所示.则这100名学生中,该月饮料消费支出超过150元的人数是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
x-1
+
3-x
的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和记为Sn,a1=2,an+1=Sn+n.
(1)求{an}的通项公式;
(2)等差数列{bn}的各项为正,其前n项和为Tn,且T3=9,又a1+b1,a2+b2,a3+b3成等比数列,
①求{bn}的通项公式;
②求证:当n≥2时,
1
b12
+
1
b22
+…+
1
bn2
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P到点A(1,0),B(a,4)和到直线x=-1的距离都相等,如果这样的点P有且只有一个,那么实数a等于(  )
A、1B、2
C、2或-2D、1或-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=log24x的图象上的两点A,B和函数y=log2x上的点C,线段AC∥y轴,△ABC是等边三角形,点B的坐标为(p,q),则p2•2q的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式2x-y-6>0表示的平面区域在直线2x-y-6=0的(  )
A、右上方B、左上方
C、右下方D、左下方

查看答案和解析>>

同步练习册答案