精英家教网 > 高中数学 > 题目详情
已知100名学生某月饮料消费支出情况的频率分布直方图如图所示.则这100名学生中,该月饮料消费支出超过150元的人数是
 
考点:频率分布直方图
专题:概率与统计
分析:根据频率分布直方图,利用频率、频数与样本容量的关系,即可求出正确的结果.
解答: 解:根据频率分布直方图,得;
消费支出超过150元的频率(0.004+0.002)×50=0.3,
∴消费支出超过150元的人数是100×0.3=30.
故答案为:30.
点评:本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面是矩形,侧面PAD是正三角形,且CD⊥面PAD,E 为侧棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:AE⊥平面PCD;
(3)若直线AC与平面PCD所成的角为45°,求
AD
CD

查看答案和解析>>

科目:高中数学 来源: 题型:

把五进制数33(5)化成二进制数是(  )
A、100100(2)
B、10010(2)
C、1010(2)
D、10100(2)

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC,tanA=
1
2
,tanC=
1
3
,则∠B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知球的半径为R,一个圆锥的高等于这个球的直径,而且球的表面积等于圆锥的表面积,求圆锥的内接等边圆柱的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
2k
k2+1
,求当k≥0时该函数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若f(x)=1+2cosx-cos2x,求函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1, -2)
b
=(x, y)

(Ⅰ)若x,y∈R,且1≤x≤6,1≤y≤6,求满足
a
b
>0
的概率.
(Ⅱ)若x,y分别表示将一枚质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次出现的点数,求满足
a
b
=-1
的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两个不同的平面和两条不重合的直线,有下列四个命题
①若m∥n,n?α,则m∥α              
②若a⊥β,α⊥β,则a∥α
③若a⊥b,a⊥α,b⊥β,则α⊥β     
④若m⊥n,α∥β,m⊥α,则n∥β
则以上命题错误的个数为(  )
A、1个B、2个C、2个D、4个

查看答案和解析>>

同步练习册答案