精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,曲线的参数方程为为参数).以直角坐标系原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为

(Ⅰ)写出曲线的极坐标方程和曲线的直角坐标方程;

(Ⅱ)设点上,点上,且,求面积的最大值.

【答案】(1);(2)

【解析】

(1)直接利用转换关系,把参数方程直角坐标方程和极坐标方程之间进行转换.

(2)直接利用(1)的结论和三角形的面积公式的应用求出结果.

1)曲线C1的参数方程为(α为参数),

转换为直角坐标方程为:(x-22+y2=4

转换为极坐标方程为:ρ=4cosθ.

曲线C2的极坐标方程为ρ=2sinθ

转换为直角坐标方程为:x2+y2-2y=0

2)点PC1上,点QC2上,且∠POQ=

则:=

因为,所以

所以

时,此时的面积由最大值,

此时最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018安徽江南十校高三3月联考线段为圆 的一条直径,其端点 在抛物线 上,且 两点到抛物线焦点的距离之和为

I)求直径所在的直线方程;

II)过点的直线交抛物线 两点,抛物线 处的切线相交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】全国糖酒商品交易会将在四川举办.展馆附近一家川菜特色餐厅为了研究参会人数与本店所需原材料数量的关系,在交易会前查阅了最近5次交易会的参会人数(万人)与餐厅所用原材料数量(袋),得到如下数据:

举办次数

第一次

第二次

第三次

第四次

第五次

参会人数(万人)

11

9

8

10

12

原材料(袋)

28

23

20

25

29

(Ⅰ)请根据所给五组数据,求出关于的线性回归方程

(Ⅱ)若该店现有原材料12袋,据悉本次交易会大约有13万人参加,为了保证原材料能够满足需要,则该店应至少再补充原材料多少袋?

(参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】M为满足下列条件的函数构成的集合,存在实数,使得.

1)判断是否为M中的元素,并说明理由;

2)设,求实数a的取值范围;

3)已知的图象与的图象交于点,证明:中的元素,并求出此时的值(用表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下面几种推理中是演绎推理的为( )

A. 由金、银、铜、铁可导电,猜想:金属都可导电

B. 猜想数列的通项公式为

C. 半径为的圆的面积,则单位圆的面积

D. 由平面直角坐标系中圆的方程为,推测空间直角坐标系中球的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在 (单位:克)中,其频率分布直方图如图所示.

(1)按分层抽样的方法从质量落在 的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;

(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:

A.所有蜜柚均以40元/千克收购;

B.低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个文艺比赛中,12名专业人士和12名观众代表各组成一个评委小组,给参赛选手打分,下面是两组评委对同一名选手的打分:

小组A 42 45 48 46 52 47 49 55 42 51 47 45

小组B 55 36 70 66 75 49 46 68 42 62 58 47

1)选择一个可以度量每一组评委打分相似性的量,并对每组评委的打分计算度量值.

2)你能据此判断小组A和小组B中哪一个更像是由专业人土组成的吗?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知菱形和矩形所在的平面互相垂直,.

(1)求直线与平面的夹角;

(2)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)的图象在它们与坐标轴交点处的切线互相平行.

(1)若关于的不等式有解,求实数的取值范围;

(2)对于函数公共定义域内的任意实数,我们把的值称为两函数在处的瞬间距离”.则函数的所有瞬间距离是否都大于2?请加以证明.

查看答案和解析>>

同步练习册答案