精英家教网 > 高中数学 > 题目详情
设函数f(x)=x3+ax2﹣9x﹣1(a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求:
(Ⅰ)a的值;
(Ⅱ)函数f(x)的单调区间.
解:(Ⅰ)因f(x)=x3+ax2﹣9x﹣1
所以f'(x)=3x2+2ax﹣9=
即当x=时,f'(x)取得最小值
因斜率最小的切线与12x+y=6平行,即该切线的斜率为﹣12,
所以解得a=±3,
由题设a<0,所以a=﹣3.
(Ⅱ)由(Ⅰ)知a=﹣3,
因此f(x)=x3﹣3x2﹣9x﹣1,f'(x)=3x2﹣6x﹣9=3(x﹣3)(x+1)
令f'(x)=0,解得:x1=﹣1,x2=3.
当x∈(﹣∞,﹣1)时,f'(x)>0,故f(x)在(﹣∞,﹣1)上为增函数;
当x∈(﹣1,3)时,f'(x)<0,故f(x)在(﹣1,3)上为减函数;
当x∈(3,+∞)时,f'(x)>0,故f(x)在(3,+∞)上为增函数.
由此可见,函数f(x)的单调递增区间为(﹣∞,﹣1)和(3,+∞);
单调递减区间为(﹣1,3).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案