设函数
定义域为
,且
.设点
是函数图像上的任意一点,过点
分别作直线
和
轴的垂线,垂足分别为
.![]()
(1)写出
的单调递减区间(不必证明);
(2)问:
是否为定值?若是,则求出该定值,若不是,则说明理由;
(3)设
为坐标原点,求四边形
面积的最小值.
(1)函数
在
上是减函数.
(2)
(3)
。
解析试题分析:
思路分析:(1)根据函数
的图象过点
,确定a,进一步认识函数的单调性。
(2)、设
,根据直线
的斜率
,确定
的方程。
利用联立方程组求得M,N的坐标,计算可得
。
(3)、为求四边形
面积的最小值,根据(2)将面积用
表示,
,应用均值定理求解。
解:(1)、因为函数
的图象过点
,
所以
函数
在
上是减函数.
(2)、设
,直线
的斜率
,
则
的方程
。
联立
,
、
,
(2)、(文)设
,直线
的斜率为
,
则
的方程
,
联立
,
,
3、
,
,
∴
,
,
,
∴
,
,
当且仅当
时,等号成立,∴ 此时四边形
面积有最小值
。
考点:函数的单调性,直线与双曲线的位置关系,平面向量的坐标运算,均值定理的应用,面积计算。
点评:中档题,本题综合性较强,难度较大。以“对号函数”为背景,综合考查函数的单调性,直线与双曲线的位置关系,平面向量的坐标运算,均值定理的应用,面积计算等。
科目:高中数学 来源: 题型:解答题
统计表明:某种型号的汽车在匀速行驶中每小时的耗油量
(升)关于行驶速度
(千米/每小时)的函数解析式可以表示为
,已知甲、乙两地相距100千米.
(1)当汽车以40千米/小时的速度行驶时,从甲地到乙地要耗油多少升?
(2)当汽车以多大速度行驶时,从甲地到乙地耗油最少?最少为多少升?
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
国家助学贷款是由财政贴息的信用贷款(即无利息贷款),旨在帮助高校家庭经济困难学生支付在校学习期间所需的学费、住宿费及生活费.每一年度申请总额不超过6000元.某大学2013届毕业生小王在本科期间共申请了24000元助学贷款,并承诺在毕业后
年内(按36个月计)全部还清.签约的单位提供的工资标准为第一年内每月1500元,第
个月开始,每月工资比前一个月增加
直到4000元.小王计划前12个月每个月还款额为500,第13个月开始,每月还款额比前一个月多
元.
(1)假设小王在第
个月还清贷款(
),试用
和
表示小王第
(
)个月的还款额
;
(2)当
时,小王将在第几个月还清最后一笔贷款?
(3)在(2)的条件下,他还清最后一笔贷款的那个月工资的余额是否能满足此月
元的基本生活费?(参考数据:
)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知f(x)=
在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值组成的集合A;
(Ⅱ)设关于x的方程f(x)=
的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某面包厂2011年利润为100万元,因市场竞争,若不开发新项目,预测从2012年起每年利润比上一年减少4万元.2012年初,该面包厂一次性投入90万元开发新项目,预测在未扣除开发所投入资金的情况下,第
年(
为正整数,2012年为第一年)的利润为
万元.设从2012年起的前
年,该厂不开发新项目的累计利润为
万元,开发新项目的累计利润为
万元(须扣除开发所投入资金).
(1)求
,
的表达式;
(2)问该新项目的开发是否有效(即开发新项目的累计利润超过不开发新项目的累计利润),如果有效,从第几年开始有效;如果无效,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数
.
(Ⅰ) 若直线y=kx+1与f (x)的反函数的图像相切, 求实数k的值;
(Ⅱ) 设x>0, 讨论曲线y=f (x) 与曲线
公共点的个数.
(Ⅲ) 设a<b, 比较
与
的大小, 并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com