5£®ÒÑÖªÊýÁÐ{an}µÄǰnÏîºÍSnÂú×㣺Sn=t£¨Sn-an+1£©£¨tΪ³£Êý£¬ÇÒt¡Ù0£¬t¡Ù1£©£®
£¨1£©Ö¤Ã÷£º{an}³ÉµÈ±ÈÊýÁУ»
£¨2£©Éè${b_n}=a_n^2+{S_n}•{a_n}$£¬ÈôÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬ÇótµÄÖµ£»
£¨3£©ÔÚÂú×ãÌõ¼þ£¨2£©µÄÇéÐÎÏ£¬Éècn=4an+1£¬ÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬Èô²»µÈʽ$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬ÇóʵÊýkµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉSn=t£¨Sn-an+1£©Çó³öÊýÁÐÊ×ÏÇҵõ½n¡Ý2ʱ£¬Sn=t£¨Sn-an+1£©£¬ÓëÔ­µÝÍÆÊ½ÁªÁ¢¿ÉµÃ{an}³ÉµÈ±ÈÊýÁУ» 
£¨2£©ÓÉ£¨1£©Çó³ö{an}µÄͨÏîºÍǰnÏîºÍSn£¬´úÈë${b_n}=a_n^2+{S_n}•{a_n}$£¬ÓÉÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬µÃ${{b}_{2}}^{2}={b}_{1}{b}_{3}$£¬¼´¿ÉÇóµÃtÖµ£»
£¨3£©ÓÉ£¨2£©ÖеÄtÖµ£¬¿ÉµÃÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬´úÈë$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7£¬·ÖÀë²ÎÊýk£¬ÔÚÓÉÊýÁеĵ¥µ÷ÐÔÇóµÃ×îÖµµÃ´ð°¸£®

½â´ð £¨1£©Ö¤Ã÷£ºÓÉSn=t£¨Sn-an+1£©£¬
µ±n=1ʱ£¬S1=t£¨S1-a1+1£©£¬µÃa1=t£¬
µ±n¡Ý2ʱ£¬Sn=t£¨Sn-an+1£©£¬¼´£¨1-t£©Sn=-tan+t£¬£¨1-t£©Sn-1=-tan-1+t£¬
¡àan=tan-1£¬
¹Ê{an}³ÉµÈ±ÈÊýÁУ» 
£¨2£©ÓÉ£¨1£©Öª{an}³ÉµÈ±ÈÊýÁÐÇÒ¹«±ÈÊÇt£¬¡à${a_n}={t^n}$£¬
¹Ê${b_n}={£¨{t^n}£©^2}+\frac{{t£¨1-{t^n}£©}}{1-t}•{t^n}$£¬¼´${b_n}=\frac{{{t^{2n}}+{t^{n+1}}-2{t^{2n+1}}}}{1-t}$£¬
ÈôÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÔòÓÐ${{b}_{2}}^{2}={b}_{1}{b}_{3}$£¬¶ø${b_1}=2{t^2}£¬{b_2}={t^3}£¨2t+1£©£¬{b_3}={t^4}£¨2{t^2}+t+1£©$
¹Ê[t3£¨2t+1£©]2=£¨2t2£©•t4£¨2t2+t+1£©£¬½âµÃ$t=\frac{1}{2}$£¬
ÔÙ½«$t=\frac{1}{2}$´úÈëbnµÃ£º${b_n}={£¨{\frac{1}{2}}£©^n}$£®
ÓÉ$\frac{{{b_{n+1}}}}{b_n}=\frac{1}{2}$Öª{bn}ΪµÈ±ÈÊýÁУ¬¡à$t=\frac{1}{2}$£»
£¨3£©ÓÉ$t=\frac{1}{2}$£¬Öª${a_n}={£¨{\frac{1}{2}}£©^n}$£¬${c_n}=4{£¨{\frac{1}{2}}£©^n}+1$£¬
¡à${T_n}=4¡Á\frac{{\frac{1}{2}£¨1-\frac{1}{2^n}£©}}{{1-\frac{1}{2}}}+n=4+n-\frac{4}{2^n}$£¬
Óɲ»µÈʽ$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬µÃ$3k¡Ý\frac{2n-7}{2^n}$£¬
Áî${d}_{n}=\frac{2n-7}{{2}^{n}}$£¬
ÓÉ${d_{n+1}}-{d_n}=\frac{2n-5}{{{2^{n+1}}}}-\frac{2n-7}{2^n}=\frac{-2n+9}{{{2^{n+1}}}}$£¬
µ±n¡Ü4ʱ£¬dn+1£¾dn£¬µ±n¡Ý4ʱ£¬dn+1£¼dn£¬
¶ø${d_4}=\frac{1}{16}£¬{d_5}=\frac{3}{32}$£¬¡àd4£¼d5£¬Ôò$3k¡Ý\frac{3}{32}$£¬µÃ$k¡Ý\frac{1}{32}$£®

µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱÈÊýÁеÄÐÔÖÊ£¬ÑµÁ·ÁËÀûÓ÷ÖÀë²ÎÊý·¨Çó½âºã³ÉÁ¢ÎÊÌ⣬ÊôÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=ln£¨x+$\sqrt{{x^2}+1}}$£©+ax7+bx3-4£¬ÆäÖÐa£¬bΪ³£Êý£¬Èôf£¨-3£©=4£¬Ôòf£¨3£©=-12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®[$\root{3}{£¨-5£©^{2}}$]${\;}^{\frac{3}{4}}$=$\sqrt{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®º¯Êý$f£¨x£©=Asin£¨wx+¦Õ£©£¨A£¾0£¬w£¾0£¬-\frac{¦Ð}{2}£¼¦Õ£¼\frac{¦Ð}{2}£©$µÄ²¿·ÖͼÏóÈçͼËùʾ£¬Ôòf£¨x£©µÄÖÜÆÚΪ£¨¡¡¡¡£©
A£®3B£®$\frac{5}{2}$C£®$\frac{2¦Ð}{3}$D£®$\frac{3¦Ð}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Ò»¸öÓ×¶ùÔ°µÄĸÇ×½ÚÁªÒê»áÉÏ£¬ÓÐ3¸öСº¢·Ö±ð¸øÂèÂè»­ÁËÒ»·ù»­×÷ΪÀñÎ·ÅÔÚÁË3¸öÏàͬµÄÐÅ·âÀ¿ÉÊÇÍüÁË×ö±ê¼Ç£¬ÏÖÔÚÂèÂèÃÇËæ»úÈÎȡһ¸öÐŷ⣬ÔòÇ¡ºÃÓÐÒ»¸öÂèÂèÄõ½ÁË×Ô¼ºº¢×ӵĻ­µÄ¸ÅÂÊΪ$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®ÒÑÖªº¯Êý$f£¨x£©=2sin£¨¦Øx+¦Õ£©£¨¦Ø£¾0£¬|¦Õ|£¼\frac{¦Ð}{2}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ôò¦Ø=2£»ÈôÆäͼÏóÏòÓÒÆ½ÒÆ$\frac{¦Ð}{3}$¸öµ¥Î»ºóµÃµ½µÄº¯ÊýΪżº¯Êý£¬Ôò¦ÕµÄֵΪ$\frac{¦Ð}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÏÂÁÐ˵·¨ÕýÈ·µÄÐòºÅÊÇ£¨2£©£¨4£©
 £¨1£©µÚÒ»ÏóÏÞ½ÇÊÇÈñ½Ç£»
 £¨2£©º¯Êýy=log${\;}_{\frac{1}{2}}$£¨x2+2x-3£©µÄµ¥µ÷ÔöÇø¼äΪ£¨-¡Þ£¬-3£©£»
 £¨3£©º¯Êýf£¨x£©=|cosx|ÊÇÖÜÆÚΪ2¦ÐµÄżº¯Êý£»
 £¨4£©·½³Ì$x=tanx£¬x¡Ê£¨{-\frac{¦Ð}{2}£¬\frac{¦Ð}{2}}£©$Ö»ÓÐÒ»¸ö½âx=0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Ë«ÇúÏß$\frac{x^2}{4}-\frac{y^2}{9}=1$µÄʵÖ᳤Ϊ£¨¡¡¡¡£©
A£®2B£®3C£®4D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èç¹ûÖ±Ïßm¡ÎÆ½Ãæ¦Á£¬Ö±Ïßn?¦Á£¬ÔòÖ±Ïßm£¬nµÄλÖùØÏµÊÇÆ½ÐлòÒìÃæ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸