·ÖÎö £¨1£©ÓÉSn=t£¨Sn-an+1£©Çó³öÊýÁÐÊ×ÏÇҵõ½n¡Ý2ʱ£¬Sn=t£¨Sn-an+1£©£¬ÓëÔµÝÍÆÊ½ÁªÁ¢¿ÉµÃ{an}³ÉµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©Çó³ö{an}µÄͨÏîºÍǰnÏîºÍSn£¬´úÈë${b_n}=a_n^2+{S_n}•{a_n}$£¬ÓÉÊýÁÐ{bn}ΪµÈ±ÈÊýÁУ¬µÃ${{b}_{2}}^{2}={b}_{1}{b}_{3}$£¬¼´¿ÉÇóµÃtÖµ£»
£¨3£©ÓÉ£¨2£©ÖеÄtÖµ£¬¿ÉµÃÊýÁÐ{cn}µÄǰnÏîºÍΪTn£¬´úÈë$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7£¬·ÖÀë²ÎÊýk£¬ÔÚÓÉÊýÁеĵ¥µ÷ÐÔÇóµÃ×îÖµµÃ´ð°¸£®
½â´ð £¨1£©Ö¤Ã÷£ºÓÉSn=t£¨Sn-an+1£©£¬
µ±n=1ʱ£¬S1=t£¨S1-a1+1£©£¬µÃa1=t£¬
µ±n¡Ý2ʱ£¬Sn=t£¨Sn-an+1£©£¬¼´£¨1-t£©Sn=-tan+t£¬£¨1-t£©Sn-1=-tan-1+t£¬
¡àan=tan-1£¬
¹Ê{an}³ÉµÈ±ÈÊýÁУ»
£¨2£©ÓÉ£¨1£©Öª{an}³ÉµÈ±ÈÊýÁÐÇÒ¹«±ÈÊÇt£¬¡à${a_n}={t^n}$£¬
¹Ê${b_n}={£¨{t^n}£©^2}+\frac{{t£¨1-{t^n}£©}}{1-t}•{t^n}$£¬¼´${b_n}=\frac{{{t^{2n}}+{t^{n+1}}-2{t^{2n+1}}}}{1-t}$£¬
ÈôÊýÁÐ{bn}ÊǵȱÈÊýÁУ¬ÔòÓÐ${{b}_{2}}^{2}={b}_{1}{b}_{3}$£¬¶ø${b_1}=2{t^2}£¬{b_2}={t^3}£¨2t+1£©£¬{b_3}={t^4}£¨2{t^2}+t+1£©$
¹Ê[t3£¨2t+1£©]2=£¨2t2£©•t4£¨2t2+t+1£©£¬½âµÃ$t=\frac{1}{2}$£¬
ÔÙ½«$t=\frac{1}{2}$´úÈëbnµÃ£º${b_n}={£¨{\frac{1}{2}}£©^n}$£®
ÓÉ$\frac{{{b_{n+1}}}}{b_n}=\frac{1}{2}$Öª{bn}ΪµÈ±ÈÊýÁУ¬¡à$t=\frac{1}{2}$£»
£¨3£©ÓÉ$t=\frac{1}{2}$£¬Öª${a_n}={£¨{\frac{1}{2}}£©^n}$£¬${c_n}=4{£¨{\frac{1}{2}}£©^n}+1$£¬
¡à${T_n}=4¡Á\frac{{\frac{1}{2}£¨1-\frac{1}{2^n}£©}}{{1-\frac{1}{2}}}+n=4+n-\frac{4}{2^n}$£¬
Óɲ»µÈʽ$\frac{12k}{4+n-{T}_{n}}$¡Ý2n-7¶ÔÈÎÒâµÄn¡ÊN*ºã³ÉÁ¢£¬µÃ$3k¡Ý\frac{2n-7}{2^n}$£¬
Áî${d}_{n}=\frac{2n-7}{{2}^{n}}$£¬
ÓÉ${d_{n+1}}-{d_n}=\frac{2n-5}{{{2^{n+1}}}}-\frac{2n-7}{2^n}=\frac{-2n+9}{{{2^{n+1}}}}$£¬
µ±n¡Ü4ʱ£¬dn+1£¾dn£¬µ±n¡Ý4ʱ£¬dn+1£¼dn£¬
¶ø${d_4}=\frac{1}{16}£¬{d_5}=\frac{3}{32}$£¬¡àd4£¼d5£¬Ôò$3k¡Ý\frac{3}{32}$£¬µÃ$k¡Ý\frac{1}{32}$£®
µãÆÀ ±¾Ì⿼²éÊýÁеÝÍÆÊ½£¬¿¼²éÁ˵ȱÈÊýÁеÄÐÔÖÊ£¬ÑµÁ·ÁËÀûÓ÷ÖÀë²ÎÊý·¨Çó½âºã³ÉÁ¢ÎÊÌ⣬ÊôÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 3 | B£® | $\frac{5}{2}$ | C£® | $\frac{2¦Ð}{3}$ | D£® | $\frac{3¦Ð}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com