精英家教网 > 高中数学 > 题目详情
17.下列说法正确的序号是(2)(4)
 (1)第一象限角是锐角;
 (2)函数y=log${\;}_{\frac{1}{2}}$(x2+2x-3)的单调增区间为(-∞,-3);
 (3)函数f(x)=|cosx|是周期为2π的偶函数;
 (4)方程$x=tanx,x∈({-\frac{π}{2},\frac{π}{2}})$只有一个解x=0.

分析 举出反例330°,可判断(1);根据复合函数的单调性“同增异减“的原则,可判断(2);求出函数的周期,可判断(3);分析直线y=x,与$y=tanx,x∈(-\frac{π}{2},\frac{π}{2})$交点个数及横坐标,可判断(4).

解答 解:330°是第一象限角,但不是锐角,故(1)错误;
函数log${\;}_{\frac{1}{2}}$(x2+2x-3)的定义域为(-∞,-3)∪(1,+∞),
当x∈(-∞,-3)时,内外函数单调性相同,此时函数为增函数,故(2)正确;
函数f(x)=|cosx|是周期为π的偶函数,故(3)错误;
直线y=x,与$y=tanx,x∈(-\frac{π}{2},\frac{π}{2})$只有一个交点(0,0),
故方程$x=tanx,x∈({-\frac{π}{2},\frac{π}{2}})$只有一个解x=0.故(4)正确;
故答案为:(2)(4)

点评 本题以命题的真假判断与应用为载体,考查了角的定义,复合函数的单调性,函数的周期性,方程根与函数的零点,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.如图,网格纸上小正方形的边长为1,粗线画出的是某多面体的三视图,则该多面体的体积为(  )
A.$\frac{32}{3}$B.64C.$\frac{32\sqrt{3}}{3}$D.$\frac{64}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知三棱锥的三视图如图所示,且a+b=4,试求这个几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}的前n项和Sn满足:Sn=t(Sn-an+1)(t为常数,且t≠0,t≠1).
(1)证明:{an}成等比数列;
(2)设${b_n}=a_n^2+{S_n}•{a_n}$,若数列{bn}为等比数列,求t的值;
(3)在满足条件(2)的情形下,设cn=4an+1,数列{cn}的前n项和为Tn,若不等式$\frac{12k}{4+n-{T}_{n}}$≥2n-7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知a>b,ab≠0,下列不等式中恒成立的有(  )
①a2>b2②2a>2b③a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$④$\frac{1}{a}$<$\frac{1}{b}$⑤($\frac{1}{3}$)a<($\frac{1}{3}$)b
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知由不等式$\left\{\begin{array}{l}x≤0\\ y≥0\\ y-kx≤2\\ y-x-4≤0\end{array}\right.$确定的平面区域Ω的面积为7,则k的值(  )
A.-2B.-1C.-3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≥3}\\{f(x+1),x<3}\end{array}\right.$,则f(1+log23)的值为$\frac{1}{12}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.函数$f(x)={(-{x^2}-2x+3)^{-\frac{1}{2}}}$的单调递增区间是[-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知某几何体的直观图(图1)和三视图如图2所示,其正(主)视图为矩形,侧(左)视图为等腰直角三角形,俯视图为直角梯形.

(1)若M为EC中点,在AD上找一点P,使MP∥平面ABE;
(2)若N为AD中点,证明:FN⊥CE;
(3)求二面角E-BD-C的正切值.

查看答案和解析>>

同步练习册答案