精英家教网 > 高中数学 > 题目详情
某公司对夏季室外工作人员规定如下:当气温超过35℃时,室外连续工作时间严禁超过100分钟;不少于60分钟的,公司给予适当补助.随机抽取部分工人调查其高温室外连续工作时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中工作时间范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(1)求频率分布直方图中x的值;
(2)根据频率分布直方图估计样本数据的中位数;
(3)用这个样本的频率分布估计总体分布,将频率视为概率;用分层抽样的方法从享受补助人员和不享受补助人员中抽取25人的样本,检测他们健康状况的变化,那么这两种人员应该各抽取多少人?
考点:频率分布直方图
专题:概率与统计
分析:(1)由频率分布直方图中,各组的累积频率为1,构造关于x的方程,解方程可得答案;
(2)设中位数为t,则20×0.0125+(t-20)×0.0250=0.5,解得中位数;
(3)根据已知数据可得享受补助人员占总体的12%,享受补助人员占总体的88%,进而根据抽取的样本容量为25,得到结论.
解答: 解:(1)由直方图可得:20×(x+0.0250+0.0065+0.0030+0.0030)=1,
解得x=0.0125.…(4分)
(2)设中位数为t,则
20×0.0125+(t-20)×0.0250=0.5,得t=30.
样本数据的中位数估计为30分钟.…(8分)
(3)享受补助人员占总体的12%,享受补助人员占总体的88%.
因为共抽取25人,所以应抽取享受补助人员25×12%=3人,
抽取不享受补助人员25×88%=22人.…(12分)
点评:本题考查的知识点是频率分布直方图,用样本估计总体,是统计基本概念的直接考查,难度不大,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的三个内角分别为A,B,C,向量
m
=(1,sin
C
2
+
3
cos
C
2
)与
n
=(cos
C
2
3
+2
2
)共线.
(Ⅰ)求角C的大小;
(Ⅱ)若D是BC边上一点,AC=2
3
,AD=2,求钝角△ACD的中线AE的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别写出函数y=1-2x和函数y=-x2+2x的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

求双曲线16x2-9y2=-144的实轴长、焦点坐标、离心率、渐近线方程、顶点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex-x2+a,x∈R的图象在点x=0处的切线为y=bx.(e≈2.71828).
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)g(x)=
f(x)
x
,x∈(0,+∞),讨论函数g(x)的单调性与极值;
(Ⅲ)若k∈Z,且f(x)+
1
2
(3x2-5x-2k)≥0 对任意x∈R恒成立,求k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某市为了了解今年高中毕业生的体能状况,从本市某校高中毕业班中抽取一个班进行铅球测试,成绩在8.0米(精确到0.1米)以上的为合格.把所得数据进行整理后,分成6组画出频率分布直方图的一部分(如图),已知从左到右前5个小组的频率分别为0.04,0.10,0.14,0.28,0.30,第6小组的频数是7.
(1)求这次铅球测试成绩合格的人数;
(2)用此次测试结果估计全市毕业生的情况.若从今年的高中毕业生中随机抽取两名,记X表示两人中成绩不合格的人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=(x-1)2+blnx,其中b为常数.
(1)档b>
1
2
时,判断函数f(x)在定义域上的单调性;
(2)当b<
1
2
时,求函数f(x)的极值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+2n+1(n∈N*),则an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦点为F1,右焦点为F2,离心率为
3
2
,过F1的直线交椭圆于A,B两点,△ABF2的周长为8.
(1)求椭圆E的方程;
(2)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与椭圆E的右准线交于点Q,问在x轴上是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出M的坐标,若不存在,说明理由.

查看答案和解析>>

同步练习册答案